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Abstract - Sliding window based methods are relatively often 
applied in prediction of various aspects related to protein 
structure. Despite their wide spread use, researchers did not 
establish a standard related to the size of the window, i.e., window 
sizes ranging between 7 and 17 residues were used in the past. To 
this end, this paper performs a computational study based on a 
probabilistic approach that aims at finding an optimal sliding 
window size. The results shows that formation of helical structure 
can be affected by amino acids (AAs) that are up to 9 positions 
away in the sequence, while the formation of coils and strands can 
be affected by AAs that are up to 3 and 6 positions away, 
respectively. Overall, our results suggest that a sliding window 
with 19 residues is optimal for secondary structure prediction, 
while for a specific prediction tasks, such as prediction of β-
strands, a smaller window size is sufficient. Finally, the 20 AAs 
are categorized into five groups based on their influence of 
formation of the secondary structure. The finding related to the 
optimal window size was confirmed based on an independent 
experimental study related to the prediction of secondary protein 
structure. 

Keywords – Protein Structure, Protein Structure Prediction, 
Sliding Window, Secondary Protein Structure 

I. INTRODUCTION 

Protein folding is a complex process that involves all amino 
acids (AAs) of the corresponding protein sequence. However, 
to improve computational efficiency and due to the limited 
number of structure samples, many structure prediction 
methods use a sliding window that covers fragments of the 
sequence, rather than the whole sequence, as the input. In fact, 
sliding window is adopted in many areas such as prediction of 
cis/trans isomerization in proteins [1], optimization of 
hydrophobicity tables [2], prediction of flexibility and rigidity 
of proteins [3], prediction of solvent accessibility of proteins 
[4], and in numerous methods for the secondary [5-10] and the 
tertiary structure prediction [11,12]. The sheer number and 
breath of these applications provide strong motivation for the 
research presented in this paper. 

 
When predicting or analyzing some characteristics of an 

amino acid Ai, researchers relatively often use a window of 
2n+1 AAs that is centered at Ai. In other words, a segment 
composed of Ai-n Ai-n+1…Ai-1 Ai Ai+1…Ai+n, AAs is used since a 
given characteristic of the central AA is determined not only 

by the AA itself, but also by the adjacent AAs. At the same 
time, different studies apply different window sizes. The sizes 
range between 7 and 17 residues. In local, secondary structure 
prediction, the 7-residue window is adopted [9]. In the 
prediction of flexibility and rigidity of proteins, researchers 
applied 9-residue window [3]. The 11-residue window was 
adopted in the cis/trans isomerization prediction [1] and the 13-
residue window was selected in the prediction of helices in 
trans-membrane proteins [7]. Finally, several secondary 
structure prediction methods use the 15-residue window [5,6], 
and at least one of them uses an even larger, 17-residue 
window [8]. It is clear that scientists have not been able come 
up with a standard with respect to the length of the window 
that provides the optimal results. A recent study shows that 
significant majority of identical sequence segments that consist 
of 10-20 residues fold into similar structures in different 
proteins [13], which suggests that their structure is conserved 
and that the other regions of the protein sequence may have 
limited impact on their structure. This supports the premise that 
the structure prediction tasks that were investigated by the 
above mentioned researchers can be performed based on 
sequence segments of limited length, which in turn provides 
validation for the sliding window based methods.  

 
However, it is obvious that the strength of the impact that 

one AA has on another AA’s secondary structure conformation 
will on average decay as their corresponding positions in the 
sequence is farther apart. We emphasize that this statement is 
true “on average”, as the actual spatial packing of the sequence 
brings some of the distant, in terms of the position in the 
sequence, AA close together. At the same time, the secondary 
structure arrangements are mostly local (except the long range 
interactions in β-sheets), and thus they motivate the above 
statement. 

 
This work estimates the distance-impact relation between an 

AA at position i and the adjacent, in terms of the position in the 
sequence, AAs. In other words, we investigate the impact of an 
AA at position i+k on the formation of the secondary structure 
of the AA at position i. Although intuitively the secondary 
structure of a given AA at position i is strongly affected by the 
type of the immediately adjacent AAs, it is not so obvious how 
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this impact changes as the value of k increases. This impact can 
be quantified based on conditional probabilities that the AA at 
position i assumes helical, strand or coil structures given the 
particular types of AAs at the positions i and i+k. The paper 
performs a carefully designed analysis of these probabilities for 
a large set of protein sequence that are characterized by low 
homology. The latter assumption allows us to draw unbiased, 
in terms of the sequence homology distribution, conclusions 
with respect to the optimal selection of the sliding window 
length. The analysis of these conditional probabilities with 
respect to individual secondary structures allows us also to 
investigate which AAs provide the strongest influence on the 
formation of specific secondary structures. Finally, the above 
findings are verified based on an experimental study that 
performs a window based prediction of the secondary protein 
structure. 

II. METHODS AND DATASETS 

A. Dataset 
The low homology dataset used to compute the probabilities 

was generated using the PICSEC protein sequence culling 
server, which uses a combination of structural and sequence 
alignments to limit the sequence homology. We used the 
cullpdb25 set, which is characterized by the maximum of 25% 
sequence identity and includes proteins that were measured at 
3.0 resolution and with R-factor equal 1.0 [14]. The original set 
includes 4127 protein sequences, which were further filtered to 
remove: 1) sequences with less than 20 AAs; 2) sequences, for 
which secondary structure information was incomplete in the 
PDB [16]; 3) sequence that included non-standard AAs; and 4) 
sequences, for which side chain coordinates are not provided in 
PDB. The missing side chain information may results in 
erroneous secondary structure assignments, as performed by 
the DSSP that requires the coordinates of the side chains [15]. 
The remaining 1743 sequences constitute the dataset that was 
used to compute the probabilities. The secondary structure of 
these 1743 sequences was assigned by DSSP. 

B. Unconditional Probabilities of AAs Being in the Helical, Strand 
and Coil Secondary Structure States 

A conditional probability that a given AA belongs to one of 
the three major secondary structures is defined as 

)(
)()(

AAN
AAClassAAPclass =  (1)

where class is one of the secondary structures, i.e., helix (H), 
strand (E) and coil (C), AA denotes one of the 20 AAs, i.e., 
AA= A, C, D…, V, W, Y, N(AA) denotes the frequency of AA in 
the input dataset and Class(AA) is the frequency of a given AA 
among residues that belong to secondary structure class in the 
dataset. The corresponding 60 probabilities are denoted as 
PH(A), PE(A), PC(A), PH(C), PE(C), PC(C),……, PH(Y), PE(Y),  
PC(Y). We note that PH(AA)+PE(AA)+PC(AA)=1. 

C. Conditional Probabilities 
Segment Ai-n Ai-n+1…Ai-1 Ai Ai+1…Ai+n defines a window of 

2n+1 AAs that is centered at AA Ai. The impact of an AA at 
position k, i.e., Ai+k and k = -1, -2, …, -n, 1, 2, …, n, on the 
secondary structure of central AA at position i can be estimated 
based on conditional probability, which is defined as 
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where AA1 and AA2 are any two out of the 20 AAs (they could 
be the same), and SS(Ai) denotes the secondary structure of Ai. 

For example, assuming that SS(Ai)=H, Ai+k=G, and Ai=A, 
P(SS(Ai)=H | Ai+k=G, Ai=A) corresponds to the conditional 
probability that an AA at  ith position is a helix given that 
(i+k)th AA in the sequence is C and the ith AA is A.  

 
If an AA at position (i+k) has an impact on the structure of 

the AA at position i, then the probability of Ai being a helix, 
strand or coil, is expected to be different for some Ai+k when 
compared with the corresponding unconditional probabilities 
PH(Ai), PE(Ai), and PC(Ai). 

                                                                   a)                                                                                                           b) 
Figure 1. a) The function f(A,G,H, k) (blue, lower line) and the corresponding unconditional probability PH(A) (red, upper line). The graph shows how AA 
G affects the secondary structure of the central AA A with the increasing distance k between them; b) The function f(AA1,A,H,3) (blue, upper line) and the 
corresponding unconditional probability  PH(AA1) (red, lower line). The graph shows how AA A affects the probability of different central AAs to form a 
helix when they are three residues away in sequence. The x axis corresponds to the 20 different central AAs. 



The conditional probabilities are expressed using a function 
of four variables, i.e., f(AA1, AA2, class, k) = P(SS(Ai)= class | 
Ai+k = AA2,Ai = AA1). Based on this definition two relevant 
cases can be considered: 
1. When assuming k as a variable and fixing the AA1, AA2, 

and class we can investigate the differences in the impact 
of a given AA on a given secondary structure of the 
central AA with respect to different distance between the 
residues. Consequently, this allows us to find the optimal 
sliding window size. 
For example, when we assume that AA1 =A, AA2 =G, and 
class = H, then f(AA1, AA2, class, k) is simplified to 
f(A,G,H, k). This function describes how AA G affects the 
probability of AA A to be a helix with respect to k that 
describes how far apart these two AAs are in the sequence. 
We expect that f(A,G,H, k)≈PH(A) when k is large enough, 
since G would be too far away from A to have any 
significant influence on the structure of A. Figure 1(a), 
which is computed using the dataset of 1743 sequences, 
illustrates this relation. The straight line corresponds to 
PH(A) = 0.573. The Figure confirms that f(A,G,H, k) is 
approaching PH(A) with the increasing value of k. 

2. When assuming AA1 as variable and the values of the other 
three variables, i.e., AA2, class and k, as fixed, we can 
study how a particular AA2, which is k residues away from 
AA1, affects the latter AA to form a specific secondary 
structure, which is denoted by class. 
For example, when we assume that AA2 =A, class = H, and 
k = 3, then f(AA1, AA2, class, k) is simplified to f(AA1,A,H, 
3). This function describes how AA A, which is 3-residue 
away from AA1 in sequence, affects the probability of AA1 

to be helix. The corresponding relation is shown and 
contrasted with the unconditional probability PH(AA1) in 
Figure 1(b).  In this case, it is evident that AA A increases 
the probability of any central AA to be a helix. 

III. RESULTS AND DISCUSSION 

A. Optimization of the Sliding Window Size for Protein Structure 
Prediction 

The optimal window size for prediction of protein structure, 
which is centered on AA Ai, should include all AAs that impact 
the structure of Ai while discarding those AAs that are too far 
away to have the impact. This can be equivalently described by 
finding the minimal value of k such that 

f(AA1, AA2, class, k) ≈Pclass(AA1) (3)
for any AA1, AA2, and class. The equation (3) describes a 
situation, in which no matter which AA will be selected as AA2, 
it will have no impact on the secondary structure of the central 
AA given the interval of (k-1) AAs. Given that (3) is true for 
any AA1, AA2 and class, we can conclude that the AA2 has no 
impact on the structure of AA1. 

 
Due to limited space, only a sample subset of results 

obtained for AA A is shown. The three functions, f(A, AA2,H, 
k), f(A, AA2, E, k), f(A, AA2, C, k), show how the probabilities 
of A to be helix, strand and coil, respectively, are influenced by 
the adjacent AAs. The corresponding graphs that include 7 out 
of the 20 functions for the AA2 = {A, G, K, L, P, R, T} are 
shown in Figure2. These curves give an insight of how these 7 
AAs impact the secondary structure of A for different values of 
k. The graphs show that when k increases to about 10, the 

                                      a)                                                                                   b)                                                                                c) 
 
Figure 2. a) The function f(A, AA2,H, k) (black lines) and the corresponding unconditional probability PH(A) (red, straight line);  b) The function f(A, AA2,E, k) 
(black lines) and the corresponding unconditional probability PE(A) (red, straight line); c) The function f(A, AA2,C, k) (black lines) and the corresponding 
unconditional probability PC(A) (red, straight line). The x-axis corresponds to k and the y-axis corresponds to the conditional probabilities. 
  

Table 1. The standard deviation of f(A, AA2,H, k), f(A, AA2, E, k), f(A, AA2, C, k) with respect to the unconditional probability of A being helix, strand and coil, 
i.e., PH(A), PE(A) and PC(A), in the function of k.  
 

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
H 0.11 0.11 0.08 0.08 0.06 0.05 0.04 0.03 0.04 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 
E 0.06 0.05 0.03 0.03 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 
C 0.12 0.09 0.06 0.05 0.03 0.04 0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 

 
  



seven  curves cluster together at PH(A), PE(A) and PC(A), 
respectively.  This means that when AA2 is about 10 residues 
away from A, it has virtually no impact on the secondary 
structure of A.  

 
The impact of all 20 AA2 is estimated based on the 

corresponding standard deviations with respect to the 
unconditional probability of A, which are defined as 
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The standard deviation is based on the average difference 
between f(A, AA2,Class, k) and PClass(A). Larger standard 
deviation corresponds to bigger impact of AA2 on the 
secondary structure of AA A.  

The example standard deviations for AA A are shown in 
Table 1. The Table shows that the impact decreases when AA2 
is farther apart from A in the sequence. The standard deviation 
saturates at k = 10. The values for k ≥ 10, which range between 
0 and 0.02, can be considered as noise.  We conclude that AAs 
that are more than 9 residues away from the central AA A have 
no impact to the secondary structure of A. Experiments 
performed for the remaining 19 central AAs show the same 
results, i.e., the secondary structure of the central AA is 
affected by the AAs that are 9 or less residues away. This 
suggests that prediction/analysis of protein structure of the 
central AA should be performed based on a 19 residues long 
window, i.e., 9 residues on the left and the right side of the 
central AA. We again emphasize that this window size assures 
that all local (with respect to sequence neighborhood) 
secondary structure interactions for the central AA are taken 
into account.  

B. Influence of Individual AA on the Formation of the Secondary 
Structure. 

Each of the 20 AAs is quite different in terms of its 
physiochemical properties such as hydrophobicity, charge, 
weight, etc. This section analyzes the differences with respect 
to their influence to form the secondary structure. The 
influence of AA2 on AA1 to form a certain secondary structure 
is measured using the following criteria 

20

))(),,,((
),,( 1

121

2

∑ −
= AA

Class AAPClasskAAAAf
kClassAAimpact (5)

If AA2 is helpful in establishing a given secondary structure, 
then the value of impact will be positive. The negative value of 
impact indicates that AA2 diminished the probability of the 
central AA to assume this structure. By the definition, the 
influence of a given AA2 is averaged over the 20 different AA1.  

 
Based on the computation of the impact values, the 20 AAs 

can be divided into five categories: 
1. AAs that are strongly related to formation of helices, 

which include A, E, K, L, M, Q and R, 
2. AAs that are strongly related to formation of strands, 

which include C, F, I, V, and Y,  
3. AAs that are strongly related to formation of coils, which 

include D, G, N, P, S, and T, 
4. AAs that are strongly related with formation of both 

helices and strands, which include W, 
5. and finally AAs which have no significant impact on 

formation of the secondary structure of the adjacent AAs, 
which include H. 

 

                                  a)                                                                                   b)                                                                               c) 
Figure 3. The influence of selected three AAs, i.e., A, I, and P on the formation of the helical, strand and coil structures, respectively: a) function f(AA1,A,H,k) 
for k = 1, 4, 7, 10, contrasted with PH(A); b) function f(AA1,I,E,k) for k = 1, 4, 7, 10, contrasted with PE(A). c) function f(AA1,P,C,k) for k = 1, 4, 7, 10, contrasted 
with PC(A).  
 

Table 2. The influence of the 20 AAs on formation of the helical, strand and coil secondary structure of the immediately adjacent AAs (k = 1). For example, for 
AA A, the three values: 0.11 for H, -0.03 for E, and -0.08 for C, represent influence on the adjacent AA to form the corresponding structures, i.e., the influence 
on AA1 to be a helix is positive and equals 0.11, while the influence on formation of a strand and coil is negative and equals -0.03 and -0.08, respectively. 
 

AA 
secondary 
structure 

A C D E F G H I K L M N P Q R S T V W Y 

H 0.11 -0.03 -0.05 0.09 0.01 -0.08 -0.02 -0.02 0.06 0.09 0.07 -0.04 -0.17 0.10 0.06 -0.05 -0.08 -0.06 0.04 -0.01
E -0.03 0.08 -0.06 -0.06 0.07 -0.06 0 0.12 -0.06 0.03 0.02 -0.05 -0.10 -0.05 -0.03 -0.02 0.02 0.15 0.03 0.07 
C -0.08 -0.05  0.11 -0.03 -0.08 0.14 0.02 -0.10 0 -0.12 -0.09 0.09 0.27 -0.05 -0.03 0.07 0.06 -0.09 -0.07 -0.06

 



Due to space limitations, we discuss only representative 
results for the first three categories. AA A, I and P are selected 
as the typical cases that influence formation of the helix, strand 
and coil structures, respectively. We note that based on the 
below discussion the reader can easily reconstruct the 
reasoning behind the presented results for all 20 AAs. 

 
Figure 3(a) shows that AA A increases the probability of an 

adjacent AA to form a helix. The five curves correspond to 
different values of k, which equals to the distance between the 
AA A and the central AA. The curve for k = 1 corresponds to 
the probability of AA1 forming a helix when A is immediately 
adjacent to it in the sequence, i.e., f(AA1,A,H, 1). Analogously, 
curves for k = 4, k = 7, and k = 10 represent functions f(AA1, A, 
H, 4), f(AA1, A, H, 7), and f(AA1, A, H, 10), respectively.  To 
analyze the influence of AA A on the secondary structure of 
the central AA, the 4 curves are compared with PH(AA1). The 
latter curve is the lowest among the 5 curves for the left most 
point of the graph, which corresponds to AA A. We observe 
that the smaller the value of k, the bigger the corresponding 
probability, which indicates that the influence of the AA A on 
the helical conformation of the central AA increases as the two 
AAs are closer to each other in the sequence.  

 
Figure 3(b) presents results with respect to the influence of 

each of the 20 AAs on the strand conformation of the central 
AA. In this case, we focus our analysis on AA I. The 
corresponding probability values for k = 4, k = 7, k = 10 and 
PE(AA1) are overlapping, which means that if AA I is at least 4 
residues away from AA1, then it does not influence the 
formation of a strand structure of the central AA. At the same 
time, I provides a strong influence on formation of a strand 
structure for the immediately adjacent AA since the value for k 
= 1 is significantly bigger than the value of PE(AA1). This is in 
contrast with results in Figure 3(a), where A is shown to 
influence formation of the helix for AA1 even being 9 residues 
apart in the sequence. Therefore, we conclude that the AA I is 
characterized by a short range, i.e., up to 3 residues away, 
influence on the formation of strands. Similar pattern can be 
observed for the remaining AAs, and thus we conclude that in 
case of the prediction efforts related directly to strand structure, 
the window size could be reduced to length of 7, i.e., 3 residues 
on each side. At the same time, we note that strands are 
characterized by long range interactions between residues that 
form β-sheets, which cannot be successfully addressed by the 
sliding window.  

 
Figure 3(c) indicates existence of a medium range influence 

on the formation of coils, i.e., the points for k = 7, k = 10 and 
PC(AA1) are overlapping, while the points for k = 1 and k = 4 
are different than the base line curve PC(AA1). Therefore, we 
conclude that AA P (as well as AAs D, G, N, S, and T) 
influence the coil conformation of the central residue from the 
distance of up to 6 residues. The size of the corresponding 
sliding window that specifically targets coil structure should be 
set to 13 residues. 

C. Experimental Verification of the Proposed Optimal Window Size  
The results presented in sections III.A and III.B demonstrate 

that the optimal window size should be 19 resides long, i.e., k 
= 9. This section provides independent experimental evaluation 
of this result by performing a K-nearest neighbor based 
prediction of the protein secondary structure. 

 
More specifically, for a given AA in a protein sequence, a 

window that consists of 2n+1 residues, i.e., n residues are to 
the left and to the right of the central AA, is used for the 
prediction of the secondary structure of the central AA. In case 
when either side of the window stretches outside of the 
sequence, the corresponding positions are filled with blanks. 
The prediction method applies K = 25, which gives highest 
prediction accuracy, and considers k = 2, 3,…, 11, 12. The 
input sequence dataset that consists of 1743 sequences was 
randomly divided into two subsets, i.e., 1243 chains were used 
as the training set and the remaining 500 sequences were used 
as the test set. The methods predicts the secondary structure of 
the central residue by finding the 25 nearest neighbors from the 
training set based on the sequence similarity. Next, the 
predicted secondary structure is set as the most frequent 
secondary structure of the central residues of the neighbors. 
The resulting three state secondary structure prediction 
accuracies when using sliding windows of varying length are 
shown in Figure 4. 

The prediction method achieves the peak accuracy of 
63.62% for k = 10. At the same time, the accuracy for k = 9 is 
63.55%, which is just 0.07% less than the best result. Therefore, 
we conclude that there is no significant difference between 
window sizes of 19 and 21 residues. For k > 10, the accuracy 
drops, illustrating that a wider window may result in a worse 
performance. We speculate that the main reason for the 
decrease in the accuracy is noise that comes from the 
information located on the window’s edges. This result 
provides validation for our findings. 

 

Figure 4. The accuracy of the three state secondary structure prediction
performed using K-nearest neighbor method with sliding windows of varying 
length. 



Although majority of secondary structure prediction 
methods use multiple sequence alignment profiles and 
position-specific scoring matrixes, and achieve accuracy of 
about 80%, a recent study showed that accuracy of these 
methods, (i.e., PSIPRED, Errsig, YASPIN, PHDpsi) drops 
significantly to 65%-67.5% when training and test sets are 
composed of 25% homology sequences [5]. The main reason 
for these relatively low results was that the prediction methods 
were based on sequence alignment, which in case of such low 
homology often produces sequence pairs that have different 
structure [17]. This suggests that alternative methods, which 
are not affected by the negative impact of alignment for low 
homology sequences, should be introduced to cope with the 
predictions for future targets. 

 
The achieved secondary structure prediction results are 

compared with results of the above mentioned study, which 
considered sequences characterized by the same homology 
threshold and a single test set composed of 500 sequences [5]. 
We note that our simple method used sequences and structure 
information based on the 1243 chains in the training set, while 
in [5], the prediction was based on PSI-BLAST profiles that 
use sequence information from hundreds of thousands of 
known proteins, and structural information based on a much 
larger training set of 3553 sequences.  Since the amount of 
training information gives an advantage to methods tested in 
[5], we conclude that the prediction accuracy achieved by our 
simple method (63.5%) is relatively high. This demonstrates 
feasibility of using a sliding window based protein structure 
prediction methods for the low homology sequences. 

IV. CONCLUSIONS 

Sliding windows based approaches are relatively popular in 
prediction of various aspects related to protein structure. Our 
study shows that selection of an optimal window length can 
increase the prediction accuracy. Based on a probabilistic 
approach, we estimated that the optimal window length should 
be 19 residues, which includes the central AA and the 9 
adjacent AAs on both of its sides. Such window includes 
information required to predict and analyze folding of local 
structures. The study also shows that helical structure is 
characterized by the long range interactions, which include 
AAs that are up to 9 residues away from the central AA. At the 
same time, strands are characterized by the short range 
interactions (up to 3 residues away) and coils by the medium 
range interactions (up to 6 residues away). Therefore, a smaller 
window size may be sufficient for some prediction tasks, such 
as prediction of beta strands. Finally, our results indicate that 
the 20 AAs can be categorized into five groups according to 
their influence on formation of different secondary structures, 
which may give new understanding of relations between the 
AAs and new insights for the protein primary sequence 
analysis. 

 
An independent, experimental evaluation of the proposed 

results concerning the window size have shown that the 
optimal results for the sliding window based secondary 
structure prediction are achieved for windows of 19 or 21 

residues. The prediction accuracy drops when either narrower 
or wider windows are used, which confirms our findings. 

 
This study provides helpful input for numerous protein 

structure prediction studies, including prediction of cis/trans 
isomerization, prediction of flexibility and rigidity, prediction 
of solvent accessibility, and especially for prediction of the 
secondary structure.  

At the same time, we note that further verification of the 
results of this research, which would encompass application of 
the windows of the proposed size to the above prediction tasks 
to check their impact on the quality of the prediction, is beyond 
the scope of this paper and will be addresses in our future work. 

ACKNOWLEDGMENT 

KC and LAK gratefully acknowledge support from NSERC 
Canada under the Discovery program and MITACS Canada 
under the Internship program. JR was supported by Liuhui 
Center for Applied Mathematics and China-Canada exchange 
program administered by MITACS and NSFC. 

REFERENCES 
[1] Song J, Burrage K, Yuan Z, Huber T. Prediction of cis/trans isomerization 

in proteins using PSI-BLAST profiles and secondary structure information, 
BMC Bioinformatics, 2006 Mar 9; 7:124. 

[2] Zviling M, Leonov H, Arkin IT. Genetic algorithm-based optimization of 
hydrophobicity tables, Bioinformatics, 2005 Jun 1; 21(11):2651-6. Epub 
2005 Mar 29. 

[3] Schlessinger A, Rost B. Protein flexibility and rigidity predicted from 
sequence, Proteins, 2005 Oct 1; 61(1):115-26. 

[4] Yuan Z, Burrage K, Mattick JS. Prediction of protein solvent accessibility 
using support vector machines, Proteins, 2002 Aug 15; 48(3):566-70. 

[5] Lin K, Simossis VA, Taylor WR, Heringa J. A simple and fast secondary 
structure prediction method using hidden neural networks, Bioinformatics, 
2005 Jan 15; 21(2):152-9, Epub 2004 Sep 17. 

[6] Jones,D.T., Protein secondary structure prediction based on position-
specific scoring matrices, Journal of Molecular Biology, 1999; 292:195-
202. 

[7] Rost B, Casadio R, Fariselli P, Sander C. Trans-membrane helices 
predicted at 95% accuracy, Protein Science, 1995 Mar; 4(3):521-33. 

[8] Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and 
implications of simple methods for predicting the secondary structure of 
globular proteins, Journal of Molecular Biology, 1978 Mar 25; 120(1):97-
120. 

[9] Boden M, Yuan Z, Bailey TL. Prediction of protein continuum secondary 
structure with probabilistic models based on NMR solved structures, BMC 
Bioinformatics, 2006 Feb 14; 7:68. 

[10] Sadeghi M, Parto S, Arab S, Ranjbar B. Prediction of protein secondary 
structure based on residue pair types and conformational states using 
dynamic programming algorithm, FEBS Letters, 2005 Jun 20; 579 (16): 
3397-400. 

[11] Sander O, Sommer I, Lengauer T, Local protein structure prediction using 
discriminative models, BMC Bioinformatics, 2006 Jan 11; 7:14. 

[12] Benros C, de Brevern AG, Etchebest C, Hazout S. Assessing a novel 
approach for predicting local 3D protein structures from sequence, 
Proteins, 2006 Mar 1; 62(4):865-80. 

[13] Ruan, J., Chen, K, Tuszynski, J., and Kurgan, L., Quantitative Analysis of 
the Conservation of the Tertiary Structure of Protein Segments, Protein 
Journal, 2006; accepted 

[14] Wang G, Dunbrack RL Jr. PISCES: recent improvements to a PDB 
sequence culling server, Nucleic Acids Research, 2005 Jul 1; 33(Web 
Server issue):W94-8. 

[15] Kabsch W, Sander C, Dictionary of protein secondary structure: pattern 
recognition of hydrogen-bonded and geometrical features, Biopolymers, 
1983 Dec; 22(12):2577-637. 



[16]  Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, 
H., Shindyalov, I., and Bourne, P., Protein Data Bank, Nucleic Acids 
Research, 2000; 28:235-242. 

[17] Rost B., Twilight Zone of Protein Sequence Alignments, Protein 
Engineering, 1999; 12:85-94. 


