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Abstract – Protein structure prediction is one of the core 

research areas in bioinformatics. This paper addresses the protein 
secondary structure prediction problem for the twilight zone 
proteins, which are characterized by low, about 25% homology to 
the sets of known sequences. The commonly used sequence 
alignment based algorithms fail to provide accurate prediction for 
sequences of such low homology, and thus alternative solutions 
should be sought. We propose a novel method that aims at the 
prediction of the number of helical structures based on the 
twilight zone protein sequences. The method is based on a custom 
designed and compact feature based sequences representation and 
applies a decision tree prediction algorithm. The performed 
experimental study shows superiority of the proposed method 
over three other prediction algorithms and the results provided 
by YASPIN algorithm, which is a state-of-the-art alignment based 
secondary structure prediction method designed using low 
homology sequences. 

Keywords: Protein Secondary Structure, Protein Sequence, 
Twilight Zone, Helix Prediction. 

I. INTRODUCTION 

Knowledge of protein structure is crucial for understanding 
its functions and the related biological processes. Proteins are 
composed of amino acid (AA) chains that fold into three 
dimensional molecules. The experimental methods to recover 
the tertiary (three dimensional) structure, which include X-ray 
crystallography and NMR, are relatively expensive, labor 
intensive, and time consuming. These facts and the growing 
gap between the number of known proteins vs. the number of 
proteins for which the structure is known, motivates 
development of computational methods for the protein 
structure prediction.  

 
Due to the significant complexity and growing quantity of 

the protein data, the predictions are performed at various levels 
of protein structure, including tertiary structure (Bujnicki, 
2006), secondary structure (Pollastri et al., 2002; McGuffin 
and Jones, 2003; Lin et al., 2005) structural class (Wang and 
Yuan, 2000; Cai et al., 2003; Kurgan and Homaeian, 2006), 
and secondary structure content (Zhang et al., 2001; Lin and 
Pan, 2001). The computational approaches can be categorized 
into: 
1. Multiple-sequence alignment based, in which, for a given 

query sequence, homologous sequences are found and the 
query sequence’s structure is deduced based on the known 
structure of the homologous sequences.  

2. Threading based, which compare a query sequence with a 
library of known folds. The comparison results in 
‘similarity’ scores, which are ranked, and the structural 
template with the best score becomes the predicted 
structure of the query sequence. The main shortcoming of 
threading methods is that they are unable to recognize 
previously unencountered structures.  

3. Fragment assembly based, which are based on an 
observation that the protein backbone structure can be 
accurately represented using short fragments taken from 
other proteins (Rohl et al, 2004; Kim et al., 2004).  

Recent research results in hybrid methods, which combine 
fragment assembly, lattice based folding simulations and 
threading (Skolnick et al., 2001; Zhang and Skolnick, 2004), 
and sequence alignment and threading (Shan et al., 2001; 
Skolnick et al., 2004) to improve accuracy. 

 
The protein secondary structure prediction is currently 

dominated by the sequence alignment methods (Cuff and 
Barton, 2000; Rost and Sander, 2000; Pollastri et al., 2002; 
Pollastri and McLysaght, 2005, Lin et al., 2005), which are 
shown to provide superior accuracy (McGuffin and Jones, 
2003). CASP studies show that the best prediction results are 
achieved by methods that are based on sequence alignment and 
utilize a committee of several prediction methods (Moult et al., 
2003). At the same time, the sequence alignment requires at 
least ~30% homology between the query protein and protein 
used to predict its structure (Sander and Schneider, 1991). The 
proteins characterized by lower, 20-30% homology with 
sequences that are used to predict their structure are called 
twilight zone proteins (Rost, 1999). More than 95% of all 
sequence pairs detected in the twilight zone have different 
structures (Rost, 1999), which significantly impacts quality of 
the structure prediction. The prediction of the secondary 
structure for homologous sequences by the state-of-the-art 
alignment secondary structure prediction methods yields about 
80% accuracy (Petersen et al., 2000; Pollastri and McLysaght, 
2005). In case of the twilight zone sequences, the accuracy 
substantially drops to about 65% to 68% (Lin et al., 2005). To 
compare, early secondary structure prediction methods that 
date back to late 1970’s achieved similar, about 66%, accuracy 
(Chou and Fasman, 1978).  
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To this end, this paper addresses an aspect of the secondary 
structure prediction for the low homology proteins. We 
propose a novel method for prediction of the number of helical 
structures based on the sequences of the twilight zone proteins.  

Since to the best of our knowledge, there are no existing 
methods for prediction of the number of helices, we compared 
the proposed method with a more general, recent method for 
the secondary structure prediction called YASPIN (Lin et al., 
2005). The latter method was designed and tested on low, ≤ 
25% sequence homology dataset, which is a superset of the 
data used in this paper. The proposed prediction method is 
shown to give prediction results better than those given by the 
multiple-sequence alignment based YASPIN method and thus 
can be used to improve quality of secondary structure 
prediction of the alignment based methods.  

 
Next, the related work is overviewed and the proposed 

prediction method is contrasted with existing prediction 
methods. 

A. Related Work 
The idea of protein secondary structure prediction stems 

from an observation that short sequence fragments prefer 
certain local structural arrangements. In general, the tertiary 
protein structure is defined by the packing of these 
arrangements (α-helices denoted by H, β-strands denoted by E 
and coils denoted by C), which constitute the secondary 
structure. A number of prediction methods related to the 
secondary structure were proposed: 
− methods that directly predict the secondary structure, 
− content prediction methods, which predict the percentage 

amount of the residues that constitute the individual 
secondary structures, i.e. helices and strands, 

− structural class prediction methods, which classify protein 
chains into corresponding structural classes (α,β,α+β, and 
α/β) that are defined based on the inclusions of the helices 
and strands in the structure. 

The last two methods provide important information to 
understand the protein confirmation, and to analyze and define 
structural and functional similarities between different proteins 
(Murzin et al., 1995).  

 
The content and structural class predictions are performed 

based on a substantially different approach when compared 
with the alignment based secondary structure prediction. 
Instead of using alignment profiles, these methods convert the 
protein sequence into a feature based representation and use 
these vectors in combination with a variety of Machine 
Learning algorithms to perform the prediction.  

 
The first content prediction effort was undertaken using 

Multiple Linear Regression (MLR) method and the 
composition vector based representation of protein sequence 
(Krigbaum and Knutton, 1973). Later, a number of approaches, 
which used different combinations of the composition vector, 
molecular weight, and hydrophobicity based auto-correlation 

functions to represent sequences and neural networks (Muskal 
and Kim, 1992; Ruan et al., 2005), analytic vector 
decomposition technique (Eisenhaber et al., 1996a), and MLR 
(Zhang et al., 1996;  Zhang et al., 1998; Zhang et al., 2001; Lin 
and Pan, 2001; Kurgan and Homaeian, 2005) were developed. 

 
Early structural class prediction methods again used 

relatively simple composition vector based sequence 
representation and applied discriminant analysis with 
Euclidean distance (Nakashima et al., 1986), Hamming 
distance (Klein and Delisi, 1986), and Mahalanobis distance 
(Chou and Zhang, 1994). Next generation prediction methods 
used more complex classification algorithms based on the 
maximum component coefficient principle (Zhang and Chou, 
1992), least correlation angle algorithm (Chou and Zhang, 
1993), fuzzy clustering (Zhang et al., 1995), neural network 
(Dubchak et al., 1999), vector decomposition (Eisenhaber et 
al., 1996b), component coupled geometric classification 
algorithm (Chou and Maggiora, 1998), Bayesian classification 
(Wang and Yuan, 2000), and support vector machines (Cai et 
al., 2003). Recent works improve structural class prediction by 
using alternative sequence representation, which includes auto-
correlation functions based on non-bonded residue energy (Bu 
et al., 1999), polypeptide composition (Luo et al., 2002), 
functional domain composition (Chou and Cai, 2003), and 
physiochemical properties (Kurgan and Homaeian, 2006). 

B. Problem Definition and Goals 
We propose a novel prediction method that aims at 

prediction of the number of helical structures using the protein 
sequence as the input. We chose this particular prediction since 
helical structures are regular and local, which result in higher 
accuracy of the corresponding secondary structure prediction, 
i.e. a recent study that concerns the twilight zone sequences 
reported about 70% accuracy for helix and 55% accuracy for 
strand (Lin et al., 2005). In contrast, coils are irregular and 
strands form long range interactions to form sheets. 
Knowledge of the number of helices for a given sequence may 
be useful in assigning structural class, learning topology of the 
corresponding protein and performing structural alignment 
studies. Since the proposed method aims at the prediction for 
the twilight zone sequences, for which alignment does not 
provide reliable information, we decided to develop our 
solution based on ideas proposed by authors of the structural 
class and content prediction methods. Therefore, the method 
converts the sequence into custom designed feature 
representation, and uses the feature values as an input to a 
selected prediction algorithm. For example, for the following 
primary sequence and secondary structure:  
− primary sequence:  GTMLLGMLMICSATEK 
− secondary structure:  CCHHHHHCCHHHHCCC 
the method should predict the number of helical structures as 2.  
Note that since one helical turn requires at least three AAs, 
hence the helical structures that include at least three residues 
are counted.  

 



1-4244-0623-4/06/$20.00 ©2006 IEEE. 

We illustrate the proposed prediction method using two 
example proteins: merozoite surface protein 1 from malaria 
parasite (Protein Data Bank (PDB) (Berman et al., 2000) ID: 
1CEJ) and human aquaporin-1 protein (PDB ID: 1FQY). The 
former protein contains no helices, while the latter contains 8 
helices, see Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The proposed method correctly predicts no helices based on 

the primary sequence of the merozoite surface protein 1 and 8 
helices based on the sequence of the aquaporin-1 protein. 

Figure 2 contrasts and integrates the proposed method with 
other prediction approaches.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

We aim at minimizing the prediction error through 
optimization of the feature representation, i.e., selection of a 
small set of well performing features, and careful selection of 
the best performing prediction algorithm. The main goal is to 
obtain the method that surpasses the quality of the alignment 
based secondary structure prediction that can also be used to 
infer the number of helices. Therefore, the developed method 
was compared with YASPIN methods, which is the most 
recent alignment based secondary structure prediction methods 
that was originally developed and tested on the twilight zone 
proteins (Lin et al., 2005). 

II. PROPOSED METHOD 

The design and test procedures performed with the proposed 
method are summarized in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

First, a suitable set of 1743 twilight zone sequences was 
selected among the protein stored in the PDB. For these 
sequences, secondary structure was assigned based on DSSP 
(Dictionary of Secondary Structures of Proteins) method 
(Kabsch and Sander, 1983), and this information was used to 
compute the number of helical structures. Next, a randomly 
selected set of 500 sequences was set aside as an independent 
test set. The remaining sequences were randomly split into two 

a)  

b)  
Fig. 1.  Ribbon picture of the secondary structure of a) merozoite surface 
protein 1 (PDB ID: 1CEJ), and b) aquaporin-1 protein  (PDB ID: 1FQY). The 
helices and strands are shown in black, while coils are shown in grey. 
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Fig. 2.  Integration of the existing and the proposed method for secondary 
protein structure prediction. 
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Fig. 3.  Design and test procedures for the proposed prediction method. 
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sets: 600 were used for design of feature representation, and 
the other 643 were used for the selection of the optimal 
learning parameters for the considered prediction algorithms 
when using the designed representation. The design of 
sequence representation and optimization of prediction 
algorithms tasks were performed using 10-fold cross validation 
tests on disjoint sets of proteins to minimize the negative 
impact of the learning bias and the overfitting. The resulting 
prediction approach was tested both on the set of 1243 proteins 
(using 10-fold cross validation) and on the independent test set 
(using the optimized algorithm’s setting and 1243 protein as 
the training set). The latter results, which are not biased by the 
performed design, were compared with the prediction on the 
independent test set performed by the YASPIN method. 

 
Next, we explain the design procedure. 

A. Dataset Preparation 
The main goal for the data preparation was to select well 

defined set of the twilight zone sequences. The dataset was 
generated using PISCES (Wang and Dunbrack, 2003), a 
protein sequence culling server that applies combination of 
structural and sequence (using PSI-BLAST) alignment to limit 
the sequence homology. We used the cullpdb25 data set as of 
May 2006, which includes sequences with the maximum of 
25% sequence identity measured at 3.0 resolution and with R-
factor equal 1. The original data set includes 4127 protein 
sequences, which were further filtered according to a set of 
rules defined in Table I to eliminate errors and inconsistencies. 
The final, filtered dataset includes 1743 sequences. 

 
TABLE I 

FILTERS USED TO SELECT HIGH QUALITY SEQUENCES 

Filter # removed 
sequences 

sequences with structure that is incomplete in PDB 2213 
sequences that include non-standard AAs 192 
sequences that do not have the side chain coordinates, which 
may cause incorrect DSSP assignment of the secondary structure 76 

sequences with less than 20 AAs 72 

B. Sequence Representation Design 
The transformation of the protein sequence into a feature 

space is performed by utilizing various physiochemical 
properties of AA, which were drawn from the past research 
studies. The related features are grouped into sets. Table II 
presents the considered features sets and points to references 
that motivated our choice and that give further details. The 
resulting 66 features, which are grouped into 8 feature sets, 
were fed into a feature selection method to design the sequence 
representation for the proposed prediction method. The Feature 
Subset Consistency (FSC) (Liu and Setiono, 1996) method, 
which aims at maximizing consistency of the target class 
values (helix counts) when the training instances are projected 
onto the feature subset, was applied on the 600 sequences 
using 10-fold cross validation. The final feature representation 
consists of the features sets that include at least 25% of 

features that were selected by the FSC method in at least 5 out 
of 10 cross validation folds, and thus provide significant 
information for the prediction. The results are summarized in 
Table III (the selected feature sets are underlined and bolded). 
Four feature sets that include total of 28 features were selected. 

 
TABLE II 

FEATURE SETS CONSIDERED FOR THE SEQUENCE REPRESENTATION  

Feature set with description Abbr. #  
features reference 

Sequence length - # of AA residues 
in protein sequence (related to 
content prediction) 

L 1 
(Muskal and Kim, 1992; 
Syed and Yona, 2003) 

Composition vector-percentage of 
each AA in the protein sequence 
(most common attribute considered 
in content and structural class 
predictions) CV 20 

(Krigbaum and Knutton, 
1973; Muskal and Kim, 
1992; Eisenhaber et al., 
1996a; Zhang et al., 
1996; Zhang et al., 1998; 
Zhang et al., 2001; Ruan 
et al., 2005; Kurgan and 
Homaeian, 2005) 

1st order composition moment 
vector -composition vector that 
incorporates position of AA in the 
sequence (improves content 
prediction) 

CMV 20 

(Ruan et al., 2005; 
Kurgan and Homaeian, 
2005; Kurgan and 
Homaeian, 2006) 

R group-divides AAs into nonpolar 
aliphatic, polar uncharged, aromatic, 
positively and negatively charged 
(used to measure protein 
concentration) 

RG 5 

(Nelson and Cox, 2000) 

Exchange group - divided AAs 
based on their structure-conserved 
mutations (describe replacements 
through evolution) 

EXG 3 
(Wang et al., 2000; 
Yang and Wang, 2003) 

Electronic group- divides AAs into 
neutrals, electron donors or 
acceptors (describe electrostatic 
forces that stabilize the structure) 

EG 5 
(Ganapathiraju et al., 
2004) 

hydrophobic group -divides AAs 
into hydrophobic and hydrophilic 
(hydrophobic force is one of the 
strongest determinant factor of a 
protein structure) 

HG 2 

(Hobohm and Sander, 
1995; Syed and Yona, 
2003) 

Auto-correlations-auto-correlations 
based on hydrophobic 
indices(describes correlation of 
hydrophobic profile along a protein 
sequence) 

AC 10 

(Zhang et al., 2001; Lin 
and Pan, 2001) 

 

TABLE III 
FEATURE SELECTION RESULTS 

Feature Set  Total # of 
features 

# features selected in at 
least 5-folds 

Sequence length 1 1 
Composition vector 20 6 
1st order composition moment vector 20 5 
R group 5 3 
Exchange group 3 0 
Electronic group 5 1 
Hydrophobic group 2 2 
Auto-Correlations 10 2 

 
The selected features describe the length of the sequence, its 

composition, and several physiochemical properties, such as 
polarity, charge, aromaticity, and hydrophobicity, of AAs in 
the sequence. These features extend the most commonly used 
representation that considers only the sequence composition 
(see section I.A). 
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C. Optimization of the Prediction Algorithms 
The 643 sequences transformed into the 28-features based 

representation were used to optimize prediction algorithms. 
Four major prediction algorithms types were considered: 
− IBk, which is a k-nearest neighbor algorithm (Aha and 

Kibler, 1991) 
− Decision table algorithm that generates production rule 

sets (Kohavi, 1995) 
− M5, which is a decision tree based algorithm that can 

handle continuous class features (Wang and Witten, 1997) 
− Support vector regression algorithm (Shevade et al., 2000) 

WEKA platform was used to perform prediction 
experiments (Witten and Frank, 2005).  

 
Similarly to (Zhang et al., 2001; Lin and Pan, 2001; Kurgan 

and Homaeian, 2005) the quality of the prediction was 
measured based on the absolute average error (error) and the 
corresponding standard deviation (stdev): 

 
 
 
 
 

 
where N is the number of test sequences, and aHci and pHci 

are the actual and predicted number of helices for the ith  test 
sequence, respectively. We note that the root mean squared 
error could be used, but we decided to use the same criteria as 
in the content prediction field. We caution the reader that the 
error values are much smaller than the root mean squared error 
values. 

The 10-fold cross validation test was used, and the error was 
minimized by tweaking the learning parameters for each of the 
algorithms. Negative predictions were rounded up to zero and 
all positive predictions were rounded to the nearest integer. 

III. EXPERIMENTAL EVALUATION  

Two sets of experimental results were performed  
− 10-fold cross validation test on the set of 1243 sequences 

that share less that 25% homology with each other. This 
test was performed for each of the four optimized 
prediction methods and both 66 and 28 feature based 
representations. 

− Test on the independent test set that includes 500 
sequences that share less than 25% homology with each 
other and with sequences in the training set. The four 
optimized prediction algorithms were trained with the 
1243 sequences that were represented using the selected 
28 features and the entire set of 66 features, and tested on 
the 500 sequences. 

These tests allow evaluating the impact of the feature 
selection and the selection of the best prediction algorithm. 
They were also compared with results of YASPIN method to 
verify if the proposed method can improve the results provided 
by alignment based secondary structure prediction algorithms. 

In the latter case, the independent test set with 500 sequences 
was fed into the PSI-BLAST to generate PSSM profiles, and 
these profiles were utilized by the YASPIN method to predict 
the secondary structures. Next, the predicted structures were 
used to compute the number of helices and the corresponding 
error and standard deviation were reported. We note that the 
original YASPIN implementation that was trained with a large 
set of 3553 sequences was used (Lin et al., 2005). Although 
these sequences also shared low, 25% homology, this training 
set is almost three times larger than the training set used by the 
proposed method, and thus we note that the YASPIN method’s 
results may be overestimated when compared to our results. 

 
Prediction results for the 10-fold cross validation tests on the 

training data with 1243 sequences are summarized in Table IV. 
TABLE IV 

10-FOLD CROSS VALIDATION RESULTS ON THE SET OF 1243 PROTEINS 

Prediction algorithm  error (stdev) 
 using all 66 features using selected 28 features 

M5 1.62 ±1.66 1.62 ±1.64 
Support vector regression 1.61 ±1.69 1.59 ±1.64 
Decision Table 1.87 ±1.84 1.79 ±1.83 
IBk 1.75 ±1.85 1.74 ±1.86 

 
The results show that M5 and support vector regression 

methods provide superior predictions (see bolded values in 
Table IV). The results also show that the sequence 
representation based on the selected 28 features provides the 
same or slightly better predictions when compared with the full 
set of 66 features. 

 
Prediction results for the independent set of 500 sequences 

are summarized in Table V. 
TABLE V 

PREDICTION TEST RESULTS ON THE INDEPENDENT SET OF 500 PROTEINS 

Prediction algorithm  error (stdev) 
 using all 66 features using selected 28 features 

M5 1.57 ±1.54 1.53 ±1.53 
Support vector regression 1.66 ±1.68 1.59 ±1.60 
Decision Table 1.98 ±1.90 1.94 ±1.89 
IBk 1.78 ±1.80 1.74 ±1.79 
YASPIN 1.74 ±1.73 

 
The results again confirm superiority of both M5 and 

support vector regression methods, although in this test the 
former one gives smaller errors (see bolded values in Table V). 
The best, M5, algorithm is also characterized by the lowest 
standard deviation. The selected sequence representation 
results in slight improvements in the error values, while it is 
substantially more compact than the original representation 
that includes 66 features. 

 
Most importantly, the proposed method performs 

substantially better than the alignment based YASPIN 
algorithm. The difference is the performance between the M5 
algorithm and the YASPIN method is visualized in Figure 4. 
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Fig. 4.  Scatter plots that show predicted vs. true number of helices for the M5 
algorithm (upper plot) and the YASPIN method (lower plot). 

 
This Figure shows a scatter plot of the actual vs. predicted 

helix counts for both methods. The dotted line represents the 
perfect results, while the diamond shaped markers show the 
predictions. The solid line shows linear regression of the 
predictions. The plots shows that YASPIN method more 
significantly underestimates the number of helical structures 
when compared to the results of the proposed method, i.e., the 
corresponding linear regression coefficient equal 0.78 and 
0.91. The results from the proposed method are clearly 
clustered around the diagonal, while the YASPIN’s predictions 
for sequences with the large number of helices suffer more 
substantial errors.  

In short, the scatter plots reveal that the proposed method 
provides a high quality alternative for prediction of the number 
of helical structures in the twilight zone protein sequences. 

IV. SUMMARY AND CONCLUSIONS  

This paper presents a novel system for the computational 
prediction of the number of helical structures in the twilight 
zone protein sequences, which are characterized by low, below 
25%, homology.  

 
The system performs prediction based on a novel and 

compact feature based sequence representation and uses a 

decision tree based prediction algorithm. Experimental 
comparison of the proposed method with three other prediction 
algorithms and prediction results based on a state-of-the-art 
alignment based secondary structure prediction algorithm show 
superiority of the former method. We note that the presented 
method can be further improved, e.g. by trying other 
alternative feature sets to represent the sequences and by using 
boosting and classifier fusion techniques. At the same time, the 
main strength of the proposed method is its simplicity and 
user-friendliness, in terms of a compact and easy to compute 
sequence representation, fast execution time and application of 
a popular, and thus easy to obtain and use, prediction 
algorithm. 

 
The results from the proposed prediction methods provide 

useful information that can be utilized to improve accuracy of 
the alignment based secondary structure prediction methods for 
low homology sequences, including the YASPIN method. 
They can be also used as input to the protein structural class 
and content prediction methods, and in investigations related to 
finding evolutionary relationships between protein structures 
and sequences. 

 
The proposed method can be extended to predict number of 

strands, which will constitute our future work. We anticipate 
that the feature selection and optimization of the prediction 
algorithms should be repeated to assure acceptable accuracy. 
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