
Fast Class-Attribute Interdependence
Maximization (CAIM) Discretization Algorithm

Lukasz Kurgan 1, and Krzysztof Cios 2,3,4,5

1 Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

2 Department of Computer Science and Engineering, University of Colorado at Denver, U.S.A.
3 Department of Computer Science, University of Colorado at Boulder, U.S.A.

4 University of Colorado Health Sciences Center, U.S.A.
5 4cData, LLC, Golden, Colorado, U.S.A.

Abstract – Discretization is a process of converting
a continuous attribute into an attribute that contains
small number of distinct values. One of the major
reasons for discretizing an attribute is that some of
the machine learning algorithms perform poorly with
continuous attribute and thus require front-end
discretization of the input data. The paper describes
a Fast Class-Attribute Interdependence Maximization
(F-CAIM) algorithm that is an extension of the
original CAIM algorithm. The algorithm works with
supervised data by maximization of the class-
attribute interdependence. The F-CAIM’s
improvement of the CAIM algorithm is significant
shortening of the computational time required to
discretize the data. It has all CAIM’s advantages like
fully automated generation of possibly minimal
number of discrete intervals, achieving the highest
class-attribute interdependency when compared with
other discretization algorithms, and improving
performance of machine learning algorithms that are
subsequently used on the discretized data. We present
the results based on extensive benchmarking tests of
F-CAIM, CAIM and six other state-of-the-art
discretization algorithms. The tests use eight well-
known machine learning datasets consisting of
continuous and mixed-mode attributes. They show
that the F-CAIM’s speed is comparable to the speed
of the simplest unsupervised algorithms and better
than these of other supervised discretization
algorithms.

Keywords: discretization, class-attribute inter-
dependency maximization, CAIM, F-CAIM,
machine learning, class boundary points,
scalability.

1. Introduction
In the information-based society one of the

challenges is to automate analysis of large data
sources. Machine learning (ML) is one of the
most successful techniques that helps in solving

the problem. One of the main goals of ML
algorithms is generation of knowledge from
class-labeled (supervised) data examples that are
described by a set of numerical, nominal or
continuous attributes. Some of the ML
algorithms, like AQ algorithm [20, 15], CLIP
algorithms [5, 6, 7], DataSqueezer algorithm
[18], and CN2 algorithm [8, 9], can handle only
numerical or nominal data. Some other ML
algorithms can handle continuous attributes but
still perform better with discrete-valued
attributes [2, 16]. The difficulty of dealing with
continuous attributes can be solved by
performing discretization prior to the learning
process [2, 11, 13, 22].

Discretization is a process of dividing a

continuous attribute into a finite set of intervals
to generate an attribute with small number of
distinct values, by associating discrete numerical
value with each of the generated intervals. More
information about the discretization process and
algorithms can be found in [4, 16, 13, 14, 3, 5, 6,
17, 19].

A supervised discretization algorithm should

automatically seek for a minimal number of
discrete intervals since their large number slows
the machine learning process [2]. It also should
generate discrete intervals that are characterized
by high interdependency with the class label.
The proposed F-CAIM algorithm is based on our
previous CAIM discretization algorithm [17, 19]
and it inherits all its properties. Both CAIM and
F-CAIM algorithms have these features:
• discretize attributes into possibly the

smallest number of intervals

• maximize the class-attribute
interdependency to improve results of the
subsequently used machine learning

• do not require user interaction since they
automatically pick proper number of
discrete intervals.

The main design goal of the F-CAIM

algorithm was to speed-up the original CAIM
algorithm, while keeping all of its advantages,
like the lowest number of discrete intervals, the
highest interdependency between class labels
and the discrete intervals, and improvement of
classification accuracy and complexity of the
models generated from the discretized data.

To show the above properties, a set of
benchmarking tests were performed using F-
CAIM and it was compared with seven well-
known discretization algorithms:
• unsupervised algorithms: Equal Width and

Equal Frequency [4]
• supervised algorithms: Patterson-Niblett

[21], Maximum Entropy [25], Information
Entropy Maximization (IEM) [14], CADD
[3], and CAIM [17, 19].

The results show that the F-CAIM algorithm,

in a manner similar to CAIM, generates the
smallest number of discrete intervals, and retains
the highest class-attribute interdependency. The
F-CAIM algorithm is also shown to be the
fastest among all five supervised discretization
algorithms.

The data discretized using the F-CAIM
algorithm and the other seven algorithms were
used with two ML algorithms: CLIP4 [6, 7], and
C5.0 [10] to generate the rules. The accuracy of
the generated rules shows that the F-CAIM
algorithm significantly improves the
classification performance, and performs best
among the seven discretization algorithms.

1.1. Some definitions of the class-
attribute interdependent discretization

Let us assume that we have a mixed-mode
data set consisting of M examples, and that each
example belongs to only one of the S classes. F
denotes continuous attributes. Then, there exists
a discretization scheme D on F, which
discretizes the continuous domain of attribute F

into n discrete intervals bounded by the pairs of
numbers (boundary points):

]}d ,(d ,],d ,(d],d ,{[d :D n1-n2110 …

where d0 is the minimal value and dn is the maximal
value of attribute F, and the values are arranged in the
ascending order. These values constitute the boundary
set {d0, d1, d2, …, dn-1, dn} for discretization D.

In D each value belonging to attribute F can

be classified into only one of the n intervals. The
membership of each value in a certain interval
for attribute F may change when the
discretization intervals change. The class
variable and the discretization variable of
attribute F can be treated as two random
variables defining a 2-D frequency matrix
(called quanta matrix) that is shown in Table 1.

Table 1. 2-D quanta matrix for attribute F and
discretization scheme D

Interval
Class

[d0, d1] … (dr-1, dr] … (dn-1, dn]
Class
Total

C1
:

Ci
:

CS

q11
:

qi1
:

qS1

…
…
…
…
…

q1r
:

qir
:

qSr

…
…
…
…
…

 q1n
:

qin
:

qSn

M1+
:

Mi+
:

MS+

Interval
Total M+1 … M+r … M+n M

In Table 1, qir is the total number of

continuous values belonging to the ith class that
are within interval (dr-1, dr]. Mi+ is the total
number of objects belonging to the ith class, and
M+r is the total number of continuous values of
attribute F that are within the interval (dr-1, dr],
for i=1,2…,S and, r= 1,2, …, n.

The F-CAIM algorithm discretizes the data
using the class-attribute dependency information
and the CAIM discretization criterion. The
criterion measures the dependency between the
class variable C and the discretization variable D
for attribute F, for a given quanta matrix, and is
defined as:

n
MFDCCAIM

n

r r

r∑
= += 1

2max

)|,(

where: n is the number of discrete intervals, r
iterates through all intervals, i.e. r=1,2,...,n, maxr
is the maximum value among all qir values
(maximum value within the rth column of the
quanta matrix), i=1,2,...,S, M+r is the total
number of continuous values of attribute F that

are within the interval (dr-1, dr]. For more
background information the reader is referred to
[17, 19].

2. The F-CAIM Algorithm
The main goal of the F-CAIM algorithm is to

do the necessary computations very fast so that
it can be applied to continuous attributes that
have large number of unique values. The other
goals are to minimize the number of discrete
intervals and to maximize the dependency
relationship between the class labels and the
discrete intervals.

The design of the F-CAIM algorithm is based
on the CAIM algorithm. A weaker feature of the
CAIM algorithm was selection of candidate
boundary points. In the CAIM algorithm they
were initialized with the min, max and all the
midpoints of all the adjacent data points, so the
number of boundary points was equal to M+1.
The F-CAIM algorithm performs different
initialization of the initial boundary points. It
initializes them with the max, min, and
midpoints of the adjacent data points, but only
for the data points of different classes. This
results in generation of maximum of M+1
boundary points, when in many real-life
problems the number can be significantly
smaller. The above idea is based on the work of
Fayyad and Irani [14]. They proved that for the
discretization that use the entropy-based
criterion the generated boundary points are
always between two data points that belong to
two different classes. Such selection of boundary
points significantly speeds up the discretization
process since fewer number of candidate
boundary points needs to be examined. This idea
is used in the IEM algorithm [14], and the ID3
algorithm [23]. It is also used to speed up an
algorithm that selects optimal partitions from
supervised data [12].

In case of the CAIM algorithm, which used
the class-attribute dependency information
discretization criterion, we could not prove that
boundary points would always be selected
between two data points that belong to two
different classes. Although we still cannot prove
this property we decided to treat the above
mechanism for selection of candidate boundary
points as a heuristic that can be incorporated into
the algorithm. The main reason was that it will

speed up processing time of the algorithm. Also,
we assume that applying the heuristic will not
worsen the quality of discretization performed
by the CAIM algorithm; this comes from our
observations that almost all of the boundary
points selected by the algorithm satisfy the
above selection mechanism. All of the above
lead to the development of the F-CAIM
algorithm.

The main difference between the CAIM and
F-CAIM algorithms is in step 1.2, where the
initial boundary points are selected. The
pseudocode of the F-CAIM algorithm follows:

Given: Data set of M examples, S classes, and
continuous attributes Fi
For every Fi do:
Step1.
1.1 find maximum (dn) and minimum (do) values of Fi
1.2 form a set of all distinct values of Fi in ascending

order and initialize all possible interval boundaries, B,
with minimum, maximum and the midpoints of all the
adjacent pairs in the set that belong to different classes

1.3 set the initial discretization scheme as
 D: {[do, dn]}, set GlobalCAIM=0
Step2.
2.1 initialize k=1;
2.2 tentatively add an inner boundary, which is not

already in D, from B, and calculate corresponding the
CAIM criterion value

2.3 after all the tentative additions have been tried accept
the one with the highest value of the CAIM criterion

2.4 if (CAIM > GlobalCAIM or k<S) then update D with
the accepted in step 2.3 boundary and set
GlobalCAIM=CAIM, else terminate

2.5 set k=k+1 and go to 2.2
Output: Discretization scheme D

The expected running time of the F-CAIM
algorithm is O(Mlog(M)). The time is calculated
in the same way as for the CAIM algorithm [19].
Although the complexity did not change
between CAIM and F-CAIM algorithms,
experimental results show that significant
improvement in the running time has been
achieved, while keeping all other advantages of
the CAIM algorithm.

3. Experiments
The eight datasets used to test the F-CAIM

algorithm are: Iris Plants (iris), Johns Hopkins
University Ionosphere (ion), Statlog Project
Heart Disease (hea), Pima Indians Diabetes
(pid), Statlog Project Satellite Image (sat),
Thyroid Disease (thy), Waveform (wav),

Attitudes Towards Workplace Smoking
Restrictions (smo). The first seven datasets are
from the UC Irvine ML repository [1], and the
last one from the StatLog repository [24].
Detailed description of the datasets is shown in
the Table 2. The experimental setup was
identical to the setup described in [19].

3.1. Analysis of the results
The F-CAIM and the other seven

discretization algorithms were used to discretize
the eight datasets. The quality of the
discretization was evaluated based on the CAIR
criterion value, number of generated intervals,
and the execution time. The CAIR criterion is
defined as [26, 17, 19]:

)|,(
)|,()|,(

FDCH
FDCIFDCR = ,

where ∑∑
= = ++

=
S

i

n

r ri

ir
ir pp

ppFDCI
1 1

2log)|,(and

∑∑
= =

=
S

i

n

r ir
ir p

pFDCH
1 1

2
1log)|,(; see Table 1.

The performance of the F-CAIM algorithm

was compared with the six discretization
algorithms. Also, direct comparison with the
performance of the CAIM [19] algorithm was
performed.

Table 3 shows the results of discretizing the
datasets using the F-CAIM and CAIM
algorithms. It shows mean and standard
deviation values for the CAIR criterion, total

number of intervals, and the execution time. It
also shows if the discretization generated by the
F-CAIM and CAIM are different, and how many
attributes were discretized differently between
the two. The results of other algorithms can be
found in [19].

The comparison shows that the F-CAIM
algorithm achieves a little worse results in terms
of class-attribute interdependency, as measured
by CAIR, the same results in terms of the
number of discrete intervals, and significantly
better results in terms of the execution time. For
all eight datasets, the F-AIM algorithm was
faster than the CAIM algorithm. The overall
quality of discretization by the F-CAIM
algorithm is similar to that of the CAIM
algorithm but significant improvement in the
execution time was achieved. We also note that
two datasets were discretized identically, while
for the remaining datasets the discretizations
were very similar, except for the ion and iris
datasets.

Table 4 compares results of the F-CAIM

algorithm with the six other algorithms (all
except the CAIM algorithm). It also shows
evaluation for the CAIM algorithm and thus
enables direct comparison of performance
between the two. The table shows mean rank
value for each of the algorithms, which is
computed by ranking results for each of the
datasets, and averaging the resulting scores.

Table 2. Major properties of datasets considered in the experimentation

Datasets Properties
iris sat thy wav ion smo hea pid

of classes 3 6 3 3 2 3 2 2
of examples 150 6435 7200 3600 351 2855 270 768

of training / testing examples 10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

10 x cross-
validation

of attributes 4 36 21 21 34 13 13 8
of continuous attributes 4 36 6 21 32 2 6 8

Table 3. Comparison of results achieved by F-CAIM and CAIM algorithms (bold indicates better result)

Dataset Criterion Discretization
Method iris std sat std thy std wav std ion std smo std hea std pid std

CAIM 0.54 0.01 0.26 0 0.170 0.01 0.130 0 0.168 0 0.010 0 0.138 0.01 0.084 0 CAIR mean
value F-CAIM 0.52 0.01 0.26 0 0.168 0.01 0.130 0 0.164 0 0.011 0 0.138 0.01 0.084 0

CAIM 12 0 216 0 18 0 63 0 64 0 6 0 12 0 16 0 total # of
intervals F-CAIM 12 0 216 0 18 0 63 0 64 0 6 0 12 0 16 0

CAIM 0.05 0.01 53.36 1.90 11.50 0.47 46.13 3.68 2.51 0.25 0.64 0.01 0.13 0.01 0.70 0.01 time [s]
F-CAIM 0.04 0 48.59 1.14 8.44 0.23 38.31 0.68 1.56 0.02 0.62 0.02 0.12 0.01 0.54 0.01

The same discretization NO YES NO YES NO NO NO NO
different attributes 2 0 1 0 24 1 1 1

Table 4. Comparison of results achieved by F-CAIM and CAIM algorithms, and the other discretization algorithms (bold
indicates best results)

Criterion CAIR mean value through all
intervals total # of intervals time [s]

Discretization Method
mean rank

when comparing
with CAIM

mean rank
when comparing

with F-CAIM

mean rank
when comparing

with CAIM

mean rank
when comparing

with F-CAIM

mean rank
when comparing

with CAIM

mean rank
when comparing

with F-CAIM
Equal Width 4.0 4.0 4.8 4.8 1.3 1.3
Equal Frequency 5.4 5.4 4.8 4.8 1.5 1.5
Paterson-Niblett 3.5 3.5 4.0 4.0 6.4 6.4
Maximum Entropy 5.9 5.9 4.4 4.4 3.5 3.8
CADD 3.4 3.4 3.6 3.6 6.6 6.6
IEM 3.1 3.0 2.1 2.1 4.1 4.5
CAIM / F-CAIM 1.9 1.6 1.3 1.3 4.1 3.6

The F-CAIM and CAIM algorithms achieve

very similar results in terms of both the CAIR
value and the number of discretization intervals
when compared to other algorithms. Both were
ranked as being the best among all other
discretization algorithms.

The shortest execution time was obviously
achieved by unsupervised discretization
algorithms since they do not utilize class
information. Among supervised algorithms the
F-CAIM algorithm was the fastest. When
analyzing performance of the CAIM algorithm,
we note that it was the second fastest, with
Maximum Entropy algorithm that was ranked
best, and IEM algorithm that achieved the same
result. Let us note that the F-CAIM algorithm is
not only faster than the original CAIM algorithm
but it also outperforms all other supervised
discretization algorithms. This is a significant
improvement that makes the F-CAIM algorithm
applicable to large datasets with hundreds of
thousands of data points and preferably small
number of classes.

3.2. Analysis of classification results on
the discretized data

The purpose of this experiment is to show the
impact of selection of a discretization algorithm
on performance of the subsequently used
machine learning algorithm. The discretized
datasets were used to generate classification
rules by two ML algorithms: the rule algorithm
called CLIP4 [6, 7], and the decision tree
algorithm called C5.0 [10]. The results show
accuracy and the number of the generated rules

for the data discretized using the eight
discretization algorithms, and for the original
data in case of testing build-in discretization of
the C5.0 algorithm.

Table 5 compares the results achieved by the

F-CAIM and CAIM algorithms. It reports mean
and standard deviation values for the accuracy
and number of rules for rules generated by both
CLIP4 and C5.0 algorithms. The results
achieved by other dicretization algorithms can
be found in [19].

The comparison shows that F-CAIM and
CAIM algorithms achieve very comparable
results for the rules generated by the CLIP4
algorithm. The results achieved for the C5.0
algorithm show that the data discretized using F-
CAIM generates better results than the data
discretized using CAIM. The accuracy of rules
generated by C5.0 was better for three datasets
for the data generated using F-CAIM. For five
out of six datasets for which there was
difference in discretization between CAIM and
F-CAIM, the latter generates on average fewer
number of rules. The F-CAIM generates data
that results in generation of 75% fewer rules for
the pid dataset, and 71% fewer rules for the hea
dataset. This shows that the data discretized by
F-CAIM is very well suited for decision tree
algorithms. The main reason for this result is
that the idea of using discretization boundaries,
which lay on the class boundaries, which is
applied in the F-CAIM algorithm, is also used in
decision trees.

Table 5. Comparison of results achieved by F-CAIM and CAIM algorithms for the classification task performed on the
already discretized data (bold indicates better results)

Datasets
iris sat thy wav ion smo pid hea ML

Algor.
Discretization

Method acc std acc std acc std acc std acc std acc std acc std acc std
CAIM 92.7 8.0 76.4 2.0 97.9 0.4 76.0 1.9 92.7 3.9 69.8 4.0 72.9 3.7 79.3 5.0 CLIP4

accuracy F-CAIM 92.7 8.0 76.4 2.0 98.1 0.7 76.0 1.9 91.8 4.9 69.0 2.9 72.5 3.9 80.0 6.3

CAIM 95.3 4.5 86.2 1.7 98.9 0.4 72.7 4.2 89.0 5.2 70.3 2.9 74.6 4.0 76.3 8.9 C5.0
accuracy F-CAIM 95.3 4.5 86.2 1.7 98.8 0.3 72.7 4.2 90.0 4.6 70.3 2.3 74.7 4.6 76.9 10.5

CAIM 3.6 0.5 45.6 0.7 7.0 0.0 14.0 0.0 1.9 0.3 18.5 0.5 1.9 0.3 7.6 0.5 CLIP4
rules F-CAIM 4.5 0.9 45.6 0.7 7.0 0.0 14.0 0.0 1.9 0.3 18.8 0.4 3.3 0.7 7.8 0.4

CAIM 3.2 0.6 332.2 16.1 10.9 1.4 58.2 5.6 7.7 1.3 1.0 0.0 20.0 2.4 31.8 2.9 C5.0
rules F-CAIM 3.1 0.3 332.2 16.1 9.8 0.8 58.2 5.6 7.6 0.5 2.2 1.4 5.1 0.9 9.3 0.8

Table 6. Comparison of results achieved by F-CAIM and CAIM algorithms, and the other discretization algorithms on the
classification task performed on the already discretized data (bold indicates best results)

Algor. Discretization
Method

mean rank
when comparing

with CAIM

mean rank
when comparing

with F-CAIM
Equal Width 4.6 4.6
Equal Frequency 4.8 4.8
Paterson-Niblett 4.3 4.1
Maximum Entropy 5.3 5.3
CADD 3.9 3.9
IEM 2.9 2.8

CLIP4
accuracy

CAIM / F-CAIM 1.8 2.0
Equal Width 5.3 5.1
Equal Frequency 6.0 5.0
Paterson-Niblett 4.3 4.3
Maximum Entropy 5.6 5.6
CADD 5.4 5.5
IEM 3.3 3.3
CAIM / F-CAIM 2.1 2.0

C5.0
accuracy

Built-in 3.3 3.4

Algor. Discretization
Method

mean rank
when comparing

with CAIM

mean rank
when comparing

with F-CAIM
Equal Width 3.8 3.5
Equal Frequency 3.5 3.5
Paterson-Niblett 2.6 2.5
Maximum Entropy 3.6 3.6
CADD 3.5 3.6
IEM 3.0 2.9

CLIP4
rules

CAIM / F-CAIM 2.1 2.5
Equal Width 4.9 4.9
Equal Frequency 5.8 5.9
Paterson-Niblett 3.3 3.3
Maximum Entropy 5.8 5.9
CADD 4.9 4.9
IEM 3.5 3.6
CAIM / F-CAIM 1.9 2.5

C5.0
rules

Built-in 3.1 3.0

The accuracy and number of generated rules

was compared between the six discretization
algorithms and the F-CAIM algorithm. The
same comparison was performed for the CAIM
algorithm in [19]. The results are summarized
using the rank values in Table 6. This enables
direct comparison of performance between the
F-CAIM and CAIM algorithms. The F-CAIM
and CAIM achieve very similar results in terms
of accuracy and number of rules when compared
to other discretization algorithms. Both are
ranked best among the considered discretization
algorithms.

The results show that the F-CAIM algorithm
generates the data that performs similarly as the
data generated by the CAIM algorithm and
better than the data generated by other
discretization algorithms when subsequently
used for supervised learning.

4. Summary and Conclusions
Discretization is a preprocessing step and

thus should be characterized by very low
complexity. To this end we proposed new
discretization algorithm, called F-CAIM.

The F-CAIM algorithm is an extension of the
CAIM algorithm. It preserves all advantages of
the CAIM algorithm, and performs significantly
faster than its predecessor especially on larger
datasets. The F-CAIM algorithm was shown to
be the fastest supervised discretization algorithm
among all considered.

Like the CAIM algorithm, the F-CAIM
algorithm discretizes the data in a way that
results in the smallest number of intervals and
the highest class-attribute interdependency when
compared with other state-of-the-art
discretization algorithms. The data discretized
using F-CAIM significantly improves the
accuracy of results achieved by the subsequently

used ML algorithms. F-CAIM is better suited
than CAIM to generate data for decision trees
while both algorithms are similarly good for rule
algorithms. Both F-CAIM and CAIM are better
than the other discretization algorithms when
analyzing results achieved by ML algorithms on
the discretized data. Finally, F-CAIM, like
CAIM, automatically selects the number of
intervals, which is in striking contrast to many
discretization algorithms.

In a nutshell, the results show high
applicability of the F-CAIM algorithm for large
datasets. It is scalable and accurate and can be
used to perform supervised discretization tasks
for a variety of real life problems.

References
[1] Blake, C.L. & Merz, C.J., UCI Repository of Machine
Learning Databases, http://www.ics.uci.edu/
~mlearn/MLRepository.html, Irvine, CA: University of
California, Department of Information and Computer
Science, 1998
[2] Catlett, J., On Changing Continuous Attributes into
ordered discrete Attributes, Proceedings of the. European
Working Session on Learning, pp.164-178, 1991
[3] Ching J.Y., Wong A.K.C. & Chan K.C.C.: Class-
Dependent Discretization for Inductive Learning from
Continuous and Mixed Mode Data, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17:7, pp. 641-
651, 1995
[4] Chiu D., Wong A. & Cheung B., Information
Discovery through Hierarchical Maximum Entropy
Discretization and Synthesis, In: Piatesky-Shapiro G.,
Frowley W.J. (Eds.) Knowledge Discovery in Databases,
MIT Press, 1991
[5] Cios, K. J., Pedrycz, W. & Swiniarski, R., Data
Mining Methods for Knowledge Discovery, Kluwer, 1998
[6] Cios K. J. & Kurgan L., Hybrid Inductive Machine
Learning: An Overview of CLIP Algorithms. In: L. C. Jain,
and J. Kacprzyk (Eds.) New Learning Paradigms in Soft
Computing, Physica-Verlag (Springer), pp.276-322, 2001
[7] Cios, K.J., & Kurgan, L., Hybrid Inductive Machine
Learning Algorithm that Generates Inequality Rules,
Information Sciences, Special Issue on Soft Computing
Data Mining, accepted, 2002
[8] Clark, P., and Niblett, Y., The CN2 Algorithm,
Machine Learning, 3, pp.261-283, 1989
[9] Clark, P., and Boswell, R., Rule Induction with CN2:
Some Recent Improvements, Lecture Notes in Artificial
Intelligence, Proceedings of the European Working Session
on Learning, Springer-Verlag, 1991
[10] Data Mining Tools, http://www.rulequest.com/ see5-
info.html, 2002
[11] Dougherty J., Kohavi R. & Sahami M., Supervised
and Unsupervised Discretization of Continuous Features,

Proceedings of the 12th International Conference on
Machine Learning, pp.194-202, 1995
[12] Elomaa, T., and Rousu, J., Speeding up the Search for
Optimal Partitions, Proceedings of the Third European
Conference on Principles of Data Mining and Knowledge
Discovery, Berlin, Heidelberg, Springer-Verlag. Lecture
Notes in Artificial Intelligence, vol.1704, pp.89-97,1999
[13] Fayyad U.M. & Irani K.B., On the Handling of
Continuous-Valued Attributes in Decision Tree Generation,
Machine Learning, 8, pp.87-102, 1992
[14] Fayyad, U.M., and Irani, K.B. Multi-Interval
Discretization of Continuous-Valued Attributes for
Classification Learning, Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence,
San Francisco, CA, Morgan Kaufmann, pp.1022-1027,
1993
[15] Kaufman, K.A., and Michalski, R.S., Learning from
Inconsistent and Noisy Data: The AQ18 Approach,
Proceedings of the Eleventh International Symposium on
Methodologies for Intelligent Systems, Warsaw, 1999
[16] Kerber R., ChiMerge: Discretization of Numeric
Attributes, Proceedings of the 9th International Conference
on Artificial Intelligence (AAAI-91), pp.123-128, 1992
[17] Kurgan L. & Cios K.J., Discretization Algorithm that
Uses Class-Attribute Interdependence Maximization,
Proceedings of the 2001 International Conference on
Artificial Intelligence (IC-AI 2001), pp.980-987, Las
Vegas, Nevada, 2001
[18] Kurgan, L. & Cios, K.J., DataSqueezer Algorithm that
Generates Small Number of Short Rules, IEE Proceedings:
Vision, Image and Signal Processing, submitted, 2002
[19] Kurgan, L., & Cios, K.J., CAIM Discretization
Algorithm, IEEE Transactions of Knowledge and Data
Engineering, accepted, 2003
[20] Michalski, R.S., Mozetic, I., Hong, J., and Lavrac, N.,
The Multipurpose Incremental Learning System AQ15 and
Its Testing Application to Three Medical Domains,
Proceedings of the Fifth National Conference on Artificial
Intelligence, Morgan-Kaufmann, pp.1041-1045, 1986
[21] Paterson, A. & Niblett, T.B., ACLS Manual,
Edinburgh: Intelligent Terminals, Ltd, 1987
[22] Pfahringer B., Compression-Based Discretization of
Continuous Attributes, Proceedings of the 12th
International Conference on Machine Learning, pp.456-
463, 1995
[23] Quinlan, J.R., Induction of Decision Trees, Machine
Learning, 1, pp.81-106, 1986
[24] Vlachos P., StatLib Project Repository,
http://lib.stat.cmu.edu, 2000
[25] Wong A.K.C. & Chiu D.K.Y., Synthesizing Statistical
Knowledge from Incomplete Mixed-Mode Data, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 9, pp.796-805, 1987
[26] Wong A.K.C. & Liu T.S., Typicality, Diversity and
Feature Pattern of an Ensemble, IEEE Transactions on
Computers, 24, pp.158-181, 1975

