

g

Abstract— Fuzzy Cognitive Maps (FCMs) are a class of
discrete-time Artificial Neural Networks that are used to model
dynamic systems. A recently introduced supervised learning
method, which is based on real-coded genetic algorithm
(RCGA), allows learning high-quality FCMs from historical
data. The current bottleneck of this learning method is its
scalability, which originates from large continuous search
space (of quadratic size with respect to the size of the FCM)
and computational complexity of genetic optimization. To this
end, the goal of this paper is to explore parallel nature of
genetic algorithms to alleviate the scalability problem. We use
the global single-population master-slave parallelization
method to speed up the FCMs learning method. We investigate
the influence of different hardware architectures on the
computational time of the learning method by executing a wide
range of synthetic and real-life benchmarking tests. We analyze
the quality of the proposed parallel learning method in
application to both dense and sparse large FCMs, i.e. maps that
consist of several dozens of concepts. The parallelization is
shown to provide substantial speed-ups, allowing doubling the
size of the FCM that can be learned by parallelization with 8
processors.

I. INTRODUCTION

A. Fuzzy Cognitive Maps

1) Overview
roposed in 1986 by Bart Kosko [14], Fuzzy Cognitive

Maps (FCMs) form a class of discrete-time Artificial
Neural Networks. They represent knowledge in a symbolic
manner and relate states, variables, events, outputs and
inputs using a cause and effect approach. FCMs, when
compared with neural networks, have several important
advantages such as relative easiness to represent structured
knowledge, and simplicity of the inference that is computed
by numeric matrix operations [17].

The FCM structure is similar to a recurrent artificial
neural network (RNN), where concepts are represented by
neurons and causal relationships by weighted edges
connecting the neurons. However, in contrast to FCMs,
RNN neurons have external inputs, whereas in FCMs, the
nodes (neurons) are only internally interconnected. Each of
FCM’s edges is associated with a weight value that reflects
the strength of the corresponding relation. This value is
usually normalized to the interval [–1,1]. Positive values

This work was supported in part by the Walter Karplus Summer
Research Grant, by the Alberta Ingenuity, and by the Natural Sciences &
Engineering Research Council of Canada (NSERC)

W. Stach, L. Kurgan, and W. Pedrycz are with the Department of
Electrical and Computer Engineering, University of Alberta, Edmonton,
Canada (e-mail: {wstach, lkurgan, pedrycz}@ece.ualberta.ca)

reflect promoting effect, while negative ones describe
inhibiting effect. The value of –1 represents full negative, +1
full positive and 0 denotes neutral relation. Other values
correspond to different intermediate levels of causal effect.
The graph representation is equivalent to a square matrix,
called connection matrix, which stores all weight values of
edges between corresponding concepts. Figure 1 shows an
example of FCM that models city health issues [16].

 N1 N2 N3 N4 N5 N6 N7
N1 0 0 0.6 0.9 0 0 0
N2 0.5 0 0 0 0 0 0
N3 0 0.6 0 0 0.8 0 0
N4 0 0 0 0 0 0 0.9
N5 0 0 0 0 0 -0.8 -0.9
N6 -0.3 0 0 0 0 0 0
N7 0 0 0 0 0 0.8 0

Fig. 1. Example of FCM model and its equivalent connection matrix

In FCMs, each node has a value that reflects the degree to
which the corresponding concept in the system is active at a
particular iteration. This value, called activation level, is a
floating-point number between 0 (inactive) and 1 (active).
For a given concept, this value is calculated by taking into
account the activation levels at the previous iteration of all
the concepts that exert influence on it:

{ }

=+∈∀ ∑

=

)()1(,,...,1
1

tCeftCNj
N

i
iijj

 (1)

where: Cj(t) – activation level of concept jth
 at iteration t

 eij – strength of relation from concept Ci to concept Cj

 f – transformation function
The transformation function is used to reduce unbounded

weighted sum to a certain range. The normalization hinders
quantitative analysis, but, at the same time, it allows for
comparisons between activation levels of different concepts.

A snapshot of activation levels of all nodes at a particular
iteration defines the system state. It can be conveniently
represented by a vector, called state vector, which consists
of the nodes’ activation values. Initial state vector refers to
the system state at the first iteration. Successive states are
calculated by iterative application of the formula (1).

Fuzzy Cognitive Maps have been successfully applied in
various domains, including engineering [21][23], medicine
[10], political science [12], economics [11], Earth and
environmental sciences [6], etc.

Parallel Learning of Large Fuzzy Cognitive Maps
Wojciech Stach, Lukasz Kurgan, and Witold Pedrycz

P

1-4244-1380-X/07/$25.00 ©2007 IEEE

Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

2) Development
There are two main groups of approaches to develop

Fuzzy Cognitive Maps: (1) deductive modeling (i.e., it uses
an expert knowledge from the domain of application); and
(2) inductive modeling (i.e., it uses learning algorithms to
establish FCMs from historical data) A comprehensive
overview of these methods can be found in [22].

Figure 2 shows a high-level diagram of the FCMs
learning method based on real-coded genetic algorithms
(RCGA), which is used in this paper. This method has been
recently introduced and thoroughly tested [19][20]. RCGA
is a floating-point extension to generic genetic algorithms.
Section B.2 gives more information on both genetic
algorithms and RCGA.

Initialize and
evaluate

population

Recombi-
nation

Stop
?

Mutation
Evalua-

tion
Selec-

tion

Yes

No

New population

Fig. 2. High-level diagram of RCGA learning method for FCMs

The RCGA learning method uses input data to develop an

FCM (candidate FCM), which is capable to mimic the
historical data [19]. The input data is given as time series
and consist of a sequence of state vectors that describe a
given system at different time points. Since FCM can be
fully represented by its connection matrix, the learning goal
is to establish N2 parameters, where N denotes the number
of concepts. They correspond to the weighted values of
mutual relations between the concepts. The RCGA
algorithm exploits the input data to find these values. The
learning objective is to generate the same state vector
sequence from the candidate FCM for the same initial state
vector, as it is defined in the input data. At the same time,
the candidate FCM generalizes the inter-relations between
concept nodes, which are inferred from the input data.
Therefore, it is suitable to perform simulations from
different initial state vectors and, based on their results, to
draw conclusions about the modeled system.

B. Parallelization of Genetic Algorithms

1) Introduction to parallel computing
Parallel computing is one of the popular techniques to

speed up the process of solving complex computational
problems [8]. It assumes simultaneous execution of the same
task on multiple processors to obtain the results faster. The
underlying assumption is that a problem being solved can be
divided into smaller tasks, which can be executed
simultaneously with a certain level of coordination.

In parallel computing, it is crucial to use parallel
algorithms to take advantage of hardware systems [25].
Parallel algorithms, in contrary to sequential algorithms,
can be divided into parts performed in parallel.
Subsequently, the partial results are put back together to
obtain the final result. The task of finding an efficient
parallel algorithm to solve a given problem can be very
challenging as we often deal with sequential constrains. For
instance, recursive solutions that require a result from
previous iteration to calculate result in next iteration are very
difficult to parallelize.

While implementing parallel algorithms, communication
among the processors to coordinate the execution of
subtasks must be considered. Hence, in practice, linear time
speed-up vs. the number of processors is very difficult to
obtain. The communication is usually realized either using
shared memory or message passing approach [15].

2) Overview of genetic algorithms
Genetic algorithms (GAs) are a search technique to find

solutions to optimization and search problems [5][7]. They
have many advantages, which include broad applicability,
ease of use, and global perspective, to name a few. GAs
originate from evolutionary biology and use genetically
inspired mechanisms, such as mutation, selection, and
crossover. These operators are applied to a population of
chromosomes that is maintained throughout the entire
searching process. Each chromosome represents a solution
to the problem, and its quality is quantified by a fitness
value that is calculated from the fitness function. The GAs
usually start from a randomly generated population and
modify it in subsequent generations. In each generation, a
new population is formed by using genetic operators, and by
exploiting fitness values of the chromosomes. The idea is to
produce better solutions to the problem over the evolving
generations. GAs can be successfully applied to large,
complex, and poorly understood search spaces, in which
classical optimization tools are often inappropriate. The
detailed information about GAs can be found in [5][7][24].

Several extensions to the generic GAs have been
introduced. In this paper, a real-coded genetic algorithms
(RCGA) approach is used as a part of the method for FCMs
learning. RCGA is a floating-point extension to GAs. In
RCGA chromosomes are represented as floating-point
vectors in contrast to GAs that use binary vectors. This
extended chromosome representation makes RCGA more

effective to tackle optimization problems with continuous
variables. Although the genetic operators in RCGA are
revised in order to deal with floating-point values, the main
principles of both GA and RCGA are the same.
Comprehensive description of the RCGA is given in [9].

The genetic algorithms can be parallelized in several
different ways that are compatible with the RCGA learning.
Parallelization can be implemented based on a single
population, or by splitting the population into
subpopulations. In this paper, a single population method
(global single-population master-slave) is chosen. This
approach parallelizes the evaluation of fitness function,
which is usually the most time-consuming part of the GA’s
optimization. The implementation is usually done as a
master-slave structure, in which the master process stores
the population and the slaves evaluate the fitness. With this
feature in mind, the entire population is split up into subsets,
which are then assigned to different available processors.
Communication between the processes occurs only when
slaves receive a subset of individuals to evaluate and when
they return the fitness values to the master process. This
parallelization architecture does not affect the behavior of
the genetic algorithm, since no additional restrictions are
imposed on the genetic operators such as crossover or
selection. This simplicity motivated our selection of this
parallelization approach. Additional information on different
approaches to parallelization of genetic algorithms can be
found in [1][3][4][13].

II. MOTIVATION AND METHODS
The bottleneck of the RCGA learning method for FCMs

is its scalability, as the number of parameters to be
established grows quadratically with the map size (number
of concepts). In addition, genetic optimization is time
consuming when employed to problems with large number
of variables. As a result, RCGA method has been applied to
FCMs which consist of up to 10 concepts. This restriction
substantially limits the applicability of this learning
approach. Since there are no other quality inductive
techniques, learning of larger size FCMs from data was not
possible. At the same time, in some areas such as systems
biology, the underlying networks that could be modeled
with FCMs are large and consist of at least several dozens of
nodes. Moreover, recently proposed extension to generic
FCMs, called higher-order fuzzy cognitive maps [18],
requires even more parameters to be established during the
learning process. These issues call for development of
learning approaches for FCMs that would be fast enough to
be applied to larger systems.

Therefore, this paper has two main goals:
• to propose a time-efficient learning method for FCMs

based on RCGA approach. To satisfy this goal, we use a
parallelized approach to real-coded genetic algorithm in
order to achieve boost in execution time. In this paper,
the global single-population master-slave method for

parallelization of GAs is used due to its simplicity.
• to test the proposed parallelized RCGA learning method

on a set of large and diverse FCMs to assess accuracy of
the developed FCMs and the amount of obtained speed-
up (when compared with sequential learning). This paper
includes results of experiments with synthetic FCMs that
consist of 10, 20, 40, and 80 concepts. Additionally, the
tests are carried out with a large real-life map.

III. EVALUATION

A. Data Sets
Similarly to experiments reported in [19], we used both

synthetic and real-life data in our experiments.

1) Synthetic data
The synthetic data for our experiments were obtained by

simulating randomly generated FCMs from random initial
vectors. Four groups of experiments have been performed
with maps that consist of 10, 20, 40, and 80 concepts,
respectively. Additionally, for each group we generated two
series of data with two different map densities (defined as
the ratio of the non-zero relations weights to the total
number of weights), 40% and 80%, respectively. Thus, as a
result, we applied 8 different experimental setups.
Additionally, for each setup, 5 independent maps were
generated to assure statistical validity of the results.

2) Real-life data
We selected one of the largest FCMs found in literature to

prepare the input data. In this case, the FCM was predefined
by the domain experts and concerned factors that affected
slurry rheology [2]. The input map included 13 concepts:
gravity, mechanical properties of particles, physiochemical
interaction, hydrodynamic interaction, effective particle
concentration, particle-particle contact, liquid viscosity,
effective particle shape, effective particle size, temperature,
inter-particle attraction, floc/structure, and shear rate. The
actual FCM can be found in [2]. Its density is 38.5%. We
generated the input data from the initial vector, which was
used to analyze the map in the original paper.

B. Evaluation Criteria
The evaluation measures of the proposed method are

threefold:
• execution time – time needed to complete the learning
• in-sample error – difference between the input data, and

data generated by simulating the candidate FCM from
the same initial state vector as for the input data. The
criterion is defined as a normalized average error
between corresponding concept values at each iteration
between the two state vector sequences [19].

 ∑∑
−

= =

−
⋅−

=
1

1 1
)(ˆ)(

)1(
1_

K

t

N

n
nn tCtC

NK
initialerror (2)

 where)(tCn is the value of a node n at iteration t in the

input data,)(ˆ tCn
is the value of a node n at iteration t

from simulation of the candidate FCM, K is the input
data length, and N is the number of nodes

• out-of-sample error – evaluation of the generalization
capabilities of the candidate FCM. To compute this
criterion, both the input model and the candidate FCMs
are simulated from ten randomly chosen initial state
vectors. Subsequently, the error_initial value is computed
for each of the simulations to compare state vector
sequences generated by the input and the candidate
FCM, and an average of these values is computed [19].

 ∑∑∑
=

−

= =

−
⋅−⋅

=
P

p

K

t

N

n

p
n

p
n tCtC

NKP
behaviorerror

1

1

1 1
)(ˆ)(

)1(
1_ (3)

 where)(tC p
n

is the value of a node n at iteration t for
data generated by input FCM started from pth initial state
vector,)(ˆ tC p

n is the value of a node n at iteration t for
data generated by candidate FCM started from pth initial
state vector, K is the input data length, and N is the
number of nodes, and P is the number of different initial
state vectors.

The first criterion is used to test the speed-up in execution
time, whereas the other two are used to evaluate quality of
the developed map. They are consistent with the criteria
reported in [19].

C. Experimental Setup
The hardware used to execute the experiments was a

state-of-the-art 12-way IBM p570 server with POWER5
processors. The code has been written in C++ using
OpenMP1, which is an application programming interface
that supports multi-platform shared memory
multiprocessing.

We repeated each experiment with different configuration
of our hardware using the following scenario. We started by
performing simulation on a single processor, and then, we
doubled the number of processors in the subsequent
experiments, up to eight processors. As a result, we carried
out four independent simulations for each experiment.

IV. RESULTS
Table I summarizes the experimental results for the

synthetic data. The reported values have been calculated as
averages obtained from 5 independent experiments (with
different models) for each setup. The columns correspond to
different experimental setups in terms of maps’ sizes (10,
20, 40, and 80) and densities (40% and 80%), the rows
correspond to different hardware configurations (the first
column defines the number of processors), and the value in
each cell expresses the average value of a corresponding
criterion followed by the standard deviation. The criteria are
labeled on the right hand side of the table.

1 http://www.openmp.org

TABLE I
EXPERIMENTAL RESULTS FOR SYNTHETIC DATA

10 nodes 20 nodes 40 nodes 80 nodes

40% 80% 40% 80% 40% 80% 40% 80%

1 608.4
±0.55

608
±0.00

1738.6
±1.52

1737.8
±1.10

5598.8
±2.04

5602.6
±1.14

19638.4
±6.16

19837.6
±7.16

2 316.8
±0.45

316.8
±0.45

988.8
±9.28

992.2
±8.46

2940.8
±1.92

2946.6
±2.07

10416.6
±4.16

10476.6
±9.16

4 205
±8.90

204.2
±8.55

673
±3.67

633.2
±6.42

2502.8
±11.36

2494.8
±13.82

9195.6
±24.05

9185.6
±26.16

8 191.8
±13.95

163.2
±18.55

453.4
±19.35

451.0
±20.83

1878.8
±14.15

1862.8
±21.04

6845.8
±58.14

6865.0
±66.16

T
im

e
[s

]

1 0.0027
±0.0009

0.0045
±0.0039

0.0055
±0.0045

0.0091
±0.0087

0.0230
±0.0104

0.0147
±0.0085

0.0337
±0.061

0.0355
±0.013

2 0.0030
±0.0010

0.0043
±0.0037

0.0056
±0.0038

0.0077
±0.0082

0.0207
±0.0106

0.0081
±0.0036

0.0373
±0.0061

0.0364
±0.013

4 0.0029
±0.0011

0.0044
±0.0042

0.0063
±0.0057

0.0084
±0.0091

0.0224
±0.0096

0.0077
±0.0034

0.0378
±0.0092

0.0366
±0.015

8 0.0031
±0.0011

0.0045
±0.0048

0.0057
±0.0042

0.0099
±0.0111

0.0232
±0.0125

0.0086
±0.0060

0.0379
±0.0085

0.0361
±0.013

In
-s

am
pl

e
er

ro
r

1 0.2012
±0.114

0.1389
±0.123

0.2584
±0.121

0.1169
±0.093

0.1782
±0.077

0.1178
±0.051

0.1482
±0.023

0.1553
±0.039

2 0.1201
±0.091

0.0341
±0.041

0.1521
±0.108

0.0963
±0.106

0.1755
±0.089

0.1177
±0.110

0.1738
±0.036

0.1600
±0.033

4 0.1303
±0.072

0.0803
±0.096

0.1447
±0.078

0.1152
±0.121

0.1656
±0.039

0.1226
±0.101

0.1632
±0.030

0.1488
±0.056

8 0.0776
±0.081

0.0288
±0.023

0.1458
±0.134

0.1058
±0.109

0.1843
±0.081

0.0946
±0.086

0.1517
±0.033

0.1494
±0.041

O
ut

-o
f-

sa
m

pl
e

er
ro

r

Table II summarizes the experimental results for the real-

life FCM. The reported values have been calculated as
averages obtained from 5 independent experiments for each
setup.

TABLE II
EXPERIMENTAL RESULTS FOR REAL-LIFE DATA

Time
[s]

In-sample
error

Out-of-
sample error

1 891.6
±0.54

0.0048
±0.0016

0.1166
±0.038

2 464.2
±0.45

0.0049
±0.0018

0.1284
±0.055

4 317.4
±0.55

0.0053
±0.0024

0.1424
±0.101

8 269.6
±18.62

0.0048
±0.0019

0.1259
±0.059

Analysis of the results for both synthetic and real-life data

is presented in the two following subsections.

A. Execution time
Results in Table I show no significant influence of density

on the execution time. The influence of the map’s size and
the number of processors on the execution time is shown in
Figure 3. The execution time for the two map densities has
been averaged out for each map size. Additionally, the
columns are linearly normalized to the maximum execution
time for each setup (which corresponds to the sequential
learning). A number above each bar shows the execution
time (in seconds).

0%

20%

40%

60%

80%

100%

10 nodes 13 nodes 20 nodes 40 nodes 80 nodes

tim
e

1 processor 2 processors 4 processors 8 processors

60
8.

2
31

6.
8

20
4.

6
17

7.
5

89
1.

6
46

4.
2

31
7.

4
26

9.
6

17
38

.2
99

0.
5

65
3.

1
45

2.
2

56
00

.7
29

43
.7

24
98

.8
18

70
.8

19
73

8
10

44
6.

6
91

90
.6

68
55

.4

Fig. 3. Execution time vs. experimental setup

0

0.01

0.02

0.03

0.04

13
nodes

10
nodes

20
nodes

40
nodes

80
nodes

10
nodes

20
nodes

40
nodes

80
nodes

38.5% 40% 80%

In
-s

am
pl

e
er

ro
r

1 processor 2 processors 4 processors 8 processors

Fig. 4. In-sample error vs. experimental setup

In general, parallel learning on eight processors allows
doubling the size of the FCM within virtually the same time
that is required for the sequential learning. Comparison of
the results obtained from simulations on a single processor
(traditional, sequential learning) to those on two processors
shows almost two-fold time-reduction for each setup (time
gain varies between 43% and 47%). However, doubling the
number of processors again does not result in the
corresponding two-fold time reduction. When compared
with sequential learning with a single processor, the time
gain is, on average, 60% and 69% for four and eight
processors, respectively. This is due to the fact that the
execution time of the sequential constraints of performing
genetic operations on population of chromosomes becomes a
more significant part of the total execution time. This
happens as the fitness function evaluations performed in
parallel are completed faster on larger number of processors.
Therefore, in this RCGA parallelization approach we
observe decreasing returns along with increasing the number
of processors.

B. Learning quality
Figure 4 shows relation between in-sample error and the

size and density of FCMs, as well as the number of
processors. A few interesting conclusions can be drawn
from this figure. Firstly, the quality of learning gradually
decreases along with the increasing input map size. The in-
sample error value changes from 0.004 for FCMs with 10
nodes to 0.036 for FCMs with 80 nodes. This is due to
complexity of the optimization problem, which drastically
increases with the increase of the size of maps. However,

even for the largest investigated maps the results are still
significantly better from the baseline of this problem, which
has been experimentally found at the value of 0.391 (see
[19] for details). Secondly, the experiments with different
hardware setups, i.e. different number of processors for a
certain map size and density, are consistent in terms of the
solution quality. The standard deviation of the in-sample
error measured for different number of processors for a
given setup is very small and varies from 0.00012 (10 nodes
80%) to 0.0020 (80 nodes 40%). This is in spite of the fact
that the error values differ, which suggests that the learning
method finds sub-optimal solutions of similar quality. The
last observation is also consistent with the conclusions in
[19]. Finally, the in-sample error does not depend on the
input map’s density. For sparser maps, it is only slightly
lower for 10 and 20-nodes FCMs, and slightly higher for 40
and 80-nodes FCMs.

Figure 5 shows the relationship between out-of-sample
error and the experimental setup, i.e. the map size and
density, and the number of processors.

0

0.04

0.08

0.12

0.16

0.2

13
nodes

10
nodes

20
nodes

40
nodes

80
nodes

10
nodes

20
nodes

40
nodes

80
nodes

38.5% 40% 80%

O
ut

-o
f-s

am
pl

e
er

ro
r

1 processor 2 processors 4 processors 8 processors

Fig. 5. Out-of-sample error vs. experimental setup

Figure 5 shows that the out-of-sample error slightly
increases as the size of maps increases. However, it does not
increase as rapidly for the larger maps as in case of the in-
sample error. The out-of-sample error is, on average, equal
to 0.109 for 10 nodes, 0.132 for 20 nodes, 0.144 for 40
nodes, and 0.156 for 80 nodes. The error values for maps
with 10 nodes are consistent with values reported in [19].
Again, we stress that the learning results are still of high
quality with respect to the baseline value (0.391). The out-
of-sample error has larger standard deviation for
experiments with the same map size and density performed
on different number of processors when compared with
corresponding values for the in-sample error, i.e., they
differs between 0.0053 (80 nodes 80%) and 0.028 (10 nodes
40%). This is due to the fact that sub-optimal solutions
(FCM models) for the out-of-sample experiments may differ
from each other. Thus, even if all of them provide high
quality results on previously seen data (in-sample error);
these models can give different simulations for new initial
vectors (out-of-sample error). Lastly, the relationship
between the input map density and the out-of-sample error is
more consistent here than in case of the in-sample error. On
average, better quality is obtained for denser maps in each
case, i.e. for 10, 20, 40, and 80 nodes.

We also analyze relation between the learning quality and
the number of processors. The difference in the in-sample
error between experiments repeated with the same setups
(on 2, 4, and 8 processors, respectively) with respect to the
sequential learning is very small (2-3% on average). In case
of the out-of-sample error, these values are larger (6-12%),
which is due to sub-optimal solutions found by the RCGA
(see the above paragraph). However, when compared with
the standard deviations obtained for the sequential setup, the
difference in errors between the non-parallelized and the
parallelized implementations is not significant.

V. CONCLUSION
This paper proposed a novel parallel approach to learning

of FCMs. The method is based on RCGA learning, which
has been previously reported as being able to develop high-
quality FCMs from input data. Our motivation was to
eliminate the main drawback of the RCGA based method,
which is incapability of dealing with larger maps due to high
computational complexity.

Our focus was to propose a solution that would combine
the quality of the RCGA method with a substantial decrease
of the execution time. We have proposed, implemented and
tested a solution that parallelizes the genetic algorithm,
which is the core of the RCGA approach.

The experimental results show that parallelization gives
substantial improvement in the execution time. The
parallelized learning of FCMs on eight processors was
reported to be up to four times faster than the sequential
learning. The proposed method allows learning maps that
include several dozens of concepts in matter of few hours
when using eight processors.

The parallelized RCGA method for learning FCMs has
been tested on both synthetic and real-life data. The
experimental results show that this method is able to provide
high-quality solutions for large FCMs. Both in-sample and
out-of-sample errors increased with the increasing map size;
however the error values were still substantially smaller than
the baseline error.

VI. FUTURE WORK
There are several future research directions based on this

project. First, it would be interesting to measure how much
of the computational time is devoted to do the fitness
evaluation. Second, a comparison between different methods
of RCGA parallelization to select the best approach will be
investigated. Third, we plan to propose an alternative
approach to speed up the learning process by exploiting
inherent characteristics of FCMs, e.g. by dividing the input
data into subsets, performing independent learning on each
subset, and, finally, merging the sub-models. Last but not
least, we plan to apply one of these learning methods to real-
life problems, e.g. in the systems biology field.

REFERENCES
[1] E. Alba, F. Luna, A. J. Nebro, and J. M. Troya, “Parallel

heterogeneous genetic algorithms for continuous optimization,”
Parallel Computing, vol. 30, no. 5–6, pp. 699–719, 2004

[2] G. A. Banini, and R. A. Bearman, “Application of fuzzy cognitive
maps to factors affecting slurry rheology,” Int. Journal of Mineral
Processing, vol. 52, no. 4, 1998

[3] E. Cantú–Paz, “A survey of parallel genetic algorithms,” Calculateurs
Parallèles, vol. 10, no. 2, pp. 141–171, 1998

[4] E. Cantú–Paz, Efficient and Accurate Parallel Genetic Algorithms,
Kluwer Academic Publishers, 2000

[5] K. Deb, An Introduction to Genetic Algorithms, SADHANA, 1999
[6] R. Giordano, G. Passarella, V. F. Uricchio, and M. Vurro, “Fuzzy

cognitive maps for issue identification in a water resources conflict
resolution system,” Physics and Chemistry of the Earth, vol. 30, no.
6–7 (Special Issue), pp. 463–469, 2005

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison–Wesley, 1989

[8] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to
Parallel Computing, Addison Wesley, 2003

[9] F. Herrera , M. Lozano , and J. L. Verdegay, “Tackling real–coded
genetic algorithms: operators and tools for behavioural analysis,”
Artificial Intelligence Review, vol. 12, no. 4, pp. 265–319, 1998

[10] P. R. Innocent, and R. I. John, “Computer aided fuzzy medical
diagnosis,” Information Sciences, vol. 162, no. 2, pp. 81–104, 2004

[11] D. Kardaras, and G. Mentzas, “Using fuzzy cognitive maps to model
and analyse business performance assessment,” in Advances in
Industrial Engineering Applications and Practice II, J. Chen, and A.
Mital, (Eds), pp. 63–68, 1997

[12] M. Khan, and M. Quaddus, “Group decision support using fuzzy
cognitive maps for causal reasoning,” Group Decision and
Negotiation Journal, vol. 13, no. 5, pp. 463–480, 2004

[13] Z. Konfrs ̌t, “Parallel genetic algorithms: advances, computing trends,
applications and perspectives,” Int. Parallel and Distributed
Processing Symposium, vol. 18, pp. 2303–2310, 2004

[14] B. Kosko, “Fuzzy cognitive maps,” Int. Journal of Man–Machine
Studies, vol. 24, pp. 65–75, 1986

[15] T. J. LeBlanc, and E. P. Markatos, “Shared memory vs. message
passing in shared–memory multiprocessors,” IEEE Symposium on
Parallel and Distributed Processing, pp. 254–263, 1992

[16] K. C. Lee, W. J. Lee, O. B. Kwon, J. H. Han, and P. I. Yu, “Strategic
planning simulation based on fuzzy cognitive map knowledge and
differential game,” Simulation, vol. 71, no. 5, pp. 316–327, 1998

[17] E. I. Papageorgiou, C. D. Stylios, and P. P. Groumpos, “Fuzzy
cognitive map learning based on nonlinear Hebbian rule,” In: T. D.
Gedeon, and L. C. C. Fung, (Eds.), Lecture Notes in Artificial
Intelligence, Springer–Verlag, vol. 2903, pp. 254–266, 2003.

[18] W. Stach, L. Kurgan, and W. Pedrycz, “Higher–order fuzzy cognitive
maps,” North American Fuzzy Information Processing Society
Conference (NAFIPS’06), 2006

[19] W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, “Genetic learning
of fuzzy cognitive maps,” Fuzzy Sets and Systems, vol. 153, no. 3, pp.
371–401, 2005

[20] W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, “Learning fuzzy
cognitive maps with required precision using genetic algorithm
approach,” Electronics Letters, vol. 40, no. 24, pp. 1519–1520, 2004

[21] W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, “Parallel fuzzy
cognitive maps as a tool for modeling software development project,”
North American Fuzzy Information Processing Society Conference
(NAFIPS’04), pp. 28–33, 2004

[22] W. Stach, L. A. Kurgan, and W. Pedrycz, “A survey of fuzzy
cognitive map learning methods,” In: P. Grzegorzewski, M.
Krawczak, and S. Zadrozny, (Eds.), Issues in Soft Computing: Theory
and Applications, Exit, pp. 71–84, 2005

[23] M. A. Styblinski, and B. D. Meyer, “Signal flow graphs versus fuzzy
cognitive maps in application to qualitative circuit analysis,” Int.
Journal of Man–Machine Studies, vol. 35, pp. 175–186, 1991

[24] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing,
vol. 4, pp. 65–85, 1994

[25] C. Xavier, and S. S. Iyengar, Introduction to Parallel Algorithms,
Wiley–Interscience, 1998

