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Abstract— Fuzzy Cognitive Maps (FCMs) are a class of 
discrete-time Artificial Neural Networks that are used to model 
dynamic systems. A recently introduced supervised learning 
method, which is based on real-coded genetic algorithm 
(RCGA), allows learning high-quality FCMs from historical 
data. The current bottleneck of this learning method is its 
scalability, which originates from large continuous search 
space (of quadratic size with respect to the size of the FCM) 
and computational complexity of genetic optimization. To this 
end, the goal of this paper is to explore parallel nature of 
genetic algorithms to alleviate the scalability problem. We use 
the global single-population master-slave parallelization 
method to speed up the FCMs learning method. We investigate 
the influence of different hardware architectures on the 
computational time of the learning method by executing a wide 
range of synthetic and real-life benchmarking tests. We analyze 
the quality of the proposed parallel learning method in 
application to both dense and sparse large FCMs, i.e. maps that 
consist of several dozens of concepts. The parallelization is 
shown to provide substantial speed-ups, allowing doubling the 
size of the FCM that can be learned by parallelization with 8 
processors. 

I. INTRODUCTION 

A. Fuzzy Cognitive Maps 

1) Overview 
roposed in 1986 by Bart Kosko [14], Fuzzy Cognitive 

Maps (FCMs) form a class of discrete-time Artificial 
Neural Networks. They represent knowledge in a symbolic 
manner and relate states, variables, events, outputs and 
inputs using a cause and effect approach. FCMs, when 
compared with neural networks, have several important 
advantages such as relative easiness to represent structured 
knowledge, and simplicity of the inference that is computed 
by numeric matrix operations [17].  

The FCM structure is similar to a recurrent artificial 
neural network (RNN), where concepts are represented by 
neurons and causal relationships by weighted edges 
connecting the neurons. However, in contrast to FCMs, 
RNN neurons have external inputs, whereas in FCMs, the 
nodes (neurons) are only internally interconnected. Each of 
FCM’s edges is associated with a weight value that reflects 
the strength of the corresponding relation. This value is 
usually normalized to the interval [–1,1]. Positive values 
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reflect promoting effect, while negative ones describe 
inhibiting effect. The value of –1 represents full negative, +1 
full positive and 0 denotes neutral relation. Other values 
correspond to different intermediate levels of causal effect. 
The graph representation is equivalent to a square matrix, 
called connection matrix, which stores all weight values of 
edges between corresponding concepts. Figure 1 shows an 
example of FCM that models city health issues [16].  

 

 

 N1 N2 N3 N4 N5 N6 N7
N1 0 0 0.6 0.9 0 0 0 
N2 0.5 0 0 0 0 0 0 
N3 0 0.6 0 0 0.8 0 0 
N4 0 0 0 0 0 0 0.9
N5 0 0 0 0 0 -0.8 -0.9
N6 -0.3 0 0 0 0 0 0 
N7 0 0 0 0 0 0.8 0 

Fig. 1.  Example of FCM model and its equivalent connection matrix 

In FCMs, each node has a value that reflects the degree to 
which the corresponding concept in the system is active at a 
particular iteration. This value, called activation level, is a 
floating-point number between 0 (inactive) and 1 (active). 
For a given concept, this value is calculated by taking into 
account the activation levels at the previous iteration of all 
the concepts that exert influence on it: 
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where: Cj(t) – activation level of concept jth
  at iteration t 

   eij – strength of relation from concept Ci to concept Cj 

    f – transformation function 
The transformation function is used to reduce unbounded 

weighted sum to a certain range. The normalization hinders 
quantitative analysis, but, at the same time, it allows for 
comparisons between activation levels of different concepts. 

A snapshot of activation levels of all nodes at a particular 
iteration defines the system state. It can be conveniently 
represented by a vector, called state vector, which consists 
of the nodes’ activation values. Initial state vector refers to 
the system state at the first iteration. Successive states are 
calculated by iterative application of the formula (1).  

Fuzzy Cognitive Maps have been successfully applied in 
various domains, including engineering [21][23], medicine 
[10], political science [12], economics [11], Earth and 
environmental sciences [6], etc. 
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2) Development 
There are two main groups of approaches to develop 

Fuzzy Cognitive Maps: (1) deductive modeling (i.e., it uses 
an expert knowledge from the domain of application); and 
(2) inductive modeling (i.e., it uses learning algorithms to 
establish FCMs from historical data) A comprehensive 
overview of these methods can be found in [22].  

Figure 2 shows a high-level diagram of the FCMs 
learning method based on real-coded genetic algorithms 
(RCGA), which is used in this paper. This method has been 
recently introduced and thoroughly tested [19][20]. RCGA 
is a floating-point extension to generic genetic algorithms. 
Section B.2 gives more information on both genetic 
algorithms and RCGA.  
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Fig. 2.  High-level diagram of RCGA learning method for FCMs 

 
The RCGA learning method uses input data to develop an 

FCM (candidate FCM), which is capable to mimic the 
historical data [19]. The input data is given as time series 
and consist of a sequence of state vectors that describe a 
given system at different time points. Since FCM can be 
fully represented by its connection matrix, the learning goal 
is to establish N2 parameters, where N denotes the number 
of concepts. They correspond to the weighted values of 
mutual relations between the concepts. The RCGA 
algorithm exploits the input data to find these values. The 
learning objective is to generate the same state vector 
sequence from the candidate FCM for the same initial state 
vector, as it is defined in the input data. At the same time, 
the candidate FCM generalizes the inter-relations between 
concept nodes, which are inferred from the input data. 
Therefore, it is suitable to perform simulations from 
different initial state vectors and, based on their results, to 
draw conclusions about the modeled system. 

B. Parallelization of Genetic Algorithms 

1) Introduction to parallel computing 
Parallel computing is one of the popular techniques to 

speed up the process of solving complex computational 
problems [8]. It assumes simultaneous execution of the same 
task on multiple processors to obtain the results faster. The 
underlying assumption is that a problem being solved can be 
divided into smaller tasks, which can be executed 
simultaneously with a certain level of coordination.  

In parallel computing, it is crucial to use parallel 
algorithms to take advantage of hardware systems [25]. 
Parallel algorithms, in contrary to sequential algorithms, 
can be divided into parts performed in parallel. 
Subsequently, the partial results are put back together to 
obtain the final result. The task of finding an efficient 
parallel algorithm to solve a given problem can be very 
challenging as we often deal with sequential constrains. For 
instance, recursive solutions that require a result from 
previous iteration to calculate result in next iteration are very 
difficult to parallelize.  

While implementing parallel algorithms, communication 
among the processors to coordinate the execution of 
subtasks must be considered. Hence, in practice, linear time 
speed-up vs. the number of processors is very difficult to 
obtain. The communication is usually realized either using 
shared memory or message passing approach [15].  

2) Overview of genetic algorithms 
Genetic algorithms (GAs) are a search technique to find 

solutions to optimization and search problems [5][7]. They 
have many advantages, which include broad applicability, 
ease of use, and global perspective, to name a few. GAs 
originate from evolutionary biology and use genetically 
inspired mechanisms, such as mutation, selection, and 
crossover. These operators are applied to a population of 
chromosomes that is maintained throughout the entire 
searching process. Each chromosome represents a solution 
to the problem, and its quality is quantified by a fitness 
value that is calculated from the fitness function. The GAs 
usually start from a randomly generated population and 
modify it in subsequent generations. In each generation, a 
new population is formed by using genetic operators, and by 
exploiting fitness values of the chromosomes. The idea is to 
produce better solutions to the problem over the evolving 
generations. GAs can be successfully applied to large, 
complex, and poorly understood search spaces, in which 
classical optimization tools are often inappropriate. The 
detailed information about GAs can be found in [5][7][24]. 

Several extensions to the generic GAs have been 
introduced. In this paper, a real-coded genetic algorithms 
(RCGA) approach is used as a part of the method for FCMs 
learning. RCGA is a floating-point extension to GAs. In 
RCGA chromosomes are represented as floating-point 
vectors in contrast to GAs that use binary vectors. This 
extended chromosome representation makes RCGA more 



 
 

 

effective to tackle optimization problems with continuous 
variables. Although the genetic operators in RCGA are 
revised in order to deal with floating-point values, the main 
principles of both GA and RCGA are the same. 
Comprehensive description of the RCGA is given in [9]. 

The genetic algorithms can be parallelized in several 
different ways that are compatible with the RCGA learning. 
Parallelization can be implemented based on a single 
population, or by splitting the population into 
subpopulations. In this paper, a single population method 
(global single-population master-slave) is chosen. This 
approach parallelizes the evaluation of fitness function, 
which is usually the most time-consuming part of the GA’s 
optimization. The implementation is usually done as a 
master-slave structure, in which the master process stores 
the population and the slaves evaluate the fitness. With this 
feature in mind, the entire population is split up into subsets, 
which are then assigned to different available processors. 
Communication between the processes occurs only when 
slaves receive a subset of individuals to evaluate and when 
they return the fitness values to the master process. This 
parallelization architecture does not affect the behavior of 
the genetic algorithm, since no additional restrictions are 
imposed on the genetic operators such as crossover or 
selection. This simplicity motivated our selection of this 
parallelization approach. Additional information on different 
approaches to parallelization of genetic algorithms can be 
found in [1][3][4][13]. 

II. MOTIVATION AND METHODS 
The bottleneck of the RCGA learning method for FCMs 

is its scalability, as the number of parameters to be 
established grows quadratically with the map size (number 
of concepts). In addition, genetic optimization is time 
consuming when employed to problems with large number 
of variables. As a result, RCGA method has been applied to 
FCMs which consist of up to 10 concepts. This restriction 
substantially limits the applicability of this learning 
approach. Since there are no other quality inductive 
techniques, learning of larger size FCMs from data was not 
possible. At the same time, in some areas such as systems 
biology, the underlying networks that could be modeled 
with FCMs are large and consist of at least several dozens of 
nodes. Moreover, recently proposed extension to generic 
FCMs, called higher-order fuzzy cognitive maps [18], 
requires even more parameters to be established during the 
learning process. These issues call for development of 
learning approaches for FCMs that would be fast enough to 
be applied to larger systems. 

Therefore, this paper has two main goals: 
• to propose a time-efficient learning method for FCMs 

based on RCGA approach. To satisfy this goal, we use a 
parallelized approach to real-coded genetic algorithm in 
order to achieve boost in execution time. In this paper, 
the global single-population master-slave method for 

parallelization of GAs is used due to its simplicity.  
• to test the proposed parallelized RCGA learning method 

on a set of large and diverse FCMs to assess accuracy of 
the developed FCMs and the amount of obtained speed-
up (when compared with sequential learning). This paper 
includes results of experiments with synthetic FCMs that 
consist of 10, 20, 40, and 80 concepts. Additionally, the 
tests are carried out with a large real-life map. 

III. EVALUATION 

A. Data Sets 
Similarly to experiments reported in [19], we used both 

synthetic and real-life data in our experiments. 

1) Synthetic data 
The synthetic data for our experiments were obtained by 

simulating randomly generated FCMs from random initial 
vectors. Four groups of experiments have been performed 
with maps that consist of 10, 20, 40, and 80 concepts, 
respectively. Additionally, for each group we generated two 
series of data with two different map densities (defined as 
the ratio of the non-zero relations weights to the total 
number of weights), 40% and 80%, respectively. Thus, as a 
result, we applied 8 different experimental setups. 
Additionally, for each setup, 5 independent maps were 
generated to assure statistical validity of the results. 

2) Real-life data 
We selected one of the largest FCMs found in literature to 

prepare the input data. In this case, the FCM was predefined 
by the domain experts and concerned factors that affected 
slurry rheology [2]. The input map included 13 concepts: 
gravity, mechanical properties of particles, physiochemical 
interaction, hydrodynamic interaction, effective particle 
concentration, particle-particle contact, liquid viscosity, 
effective particle shape, effective particle size, temperature, 
inter-particle attraction, floc/structure, and shear rate. The 
actual FCM can be found in [2]. Its density is 38.5%. We 
generated the input data from the initial vector, which was 
used to analyze the map in the original paper.  

B. Evaluation Criteria 
The evaluation measures of the proposed method are 

threefold: 
• execution time –  time needed to complete the learning 
• in-sample error  – difference between the input data, and 

data generated by simulating the candidate FCM from 
the same initial state vector as for the input data. The 
criterion is defined as a normalized average error 
between corresponding concept values at each iteration 
between the two state vector sequences [19]. 
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input data, )(ˆ tCn
is the value of a node n at iteration t 

from simulation of the candidate FCM, K is the input 
data length, and N is the number of nodes 

• out-of-sample error – evaluation of the generalization 
capabilities of the candidate FCM. To compute this 
criterion, both the input model and the candidate FCMs 
are simulated from ten randomly chosen initial state 
vectors. Subsequently, the error_initial value is computed 
for each of the simulations to compare state vector 
sequences generated by the input and the candidate 
FCM, and an average of these values is computed [19].  
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 where  )(tC p
n

is the value of a node n at iteration t for 
data generated by input FCM started from pth initial state 
vector, )(ˆ tC p

n  is the value of a node n at iteration t for 
data generated by candidate FCM started from pth initial 
state vector, K is the input data length, and N is the 
number of nodes, and P is the number of different initial 
state vectors. 

The first criterion is used to test the speed-up in execution 
time, whereas the other two are used to evaluate quality of 
the developed map. They are consistent with the criteria 
reported in [19]. 

C. Experimental Setup 
The hardware used to execute the experiments was a 

state-of-the-art 12-way IBM p570 server with POWER5 
processors. The code has been written in C++ using 
OpenMP1, which is an application programming interface 
that supports multi-platform shared memory 
multiprocessing. 

We repeated each experiment with different configuration 
of our hardware using the following scenario. We started by 
performing simulation on a single processor, and then, we 
doubled the number of processors in the subsequent 
experiments, up to eight processors. As a result, we carried 
out four independent simulations for each experiment. 

IV. RESULTS 
Table I summarizes the experimental results for the 

synthetic data. The reported values have been calculated as 
averages obtained from 5 independent experiments (with 
different models) for each setup. The columns correspond to 
different experimental setups in terms of maps’ sizes (10, 
20, 40, and 80) and densities (40% and 80%), the rows 
correspond to different hardware configurations (the first 
column defines the number of processors), and the value in 
each cell expresses the average value of a corresponding 
criterion followed by the standard deviation. The criteria are 
labeled on the right hand side of the table. 

 
 

 
1 http://www.openmp.org 

TABLE I 
EXPERIMENTAL RESULTS FOR SYNTHETIC DATA 

10 nodes 20 nodes 40 nodes 80 nodes  

# 40% 80% 40% 80% 40% 80% 40% 80% 

1 608.4 
±0.55 

608 
±0.00 

1738.6
±1.52 

1737.8
±1.10 

5598.8 
±2.04 

5602.6 
±1.14 

19638.4
±6.16 

19837.6
±7.16 

2 316.8 
±0.45 

316.8 
±0.45 

988.8 
±9.28 

992.2 
±8.46 

2940.8 
±1.92 

2946.6 
±2.07 

10416.6
±4.16 

10476.6
±9.16 

4 205 
±8.90 

204.2 
±8.55 

673 
±3.67 

633.2 
±6.42 

2502.8 
±11.36 

2494.8 
±13.82 

9195.6 
±24.05 

9185.6
±26.16 

8 191.8 
±13.95

163.2 
±18.55

453.4 
±19.35

451.0 
±20.83

1878.8 
±14.15 

1862.8 
±21.04 

6845.8 
±58.14 

6865.0
±66.16 

T
im

e 
[s

] 

1 0.0027
±0.0009

0.0045
±0.0039

0.0055
±0.0045

0.0091
±0.0087

0.0230 
±0.0104 

0.0147 
±0.0085 

0.0337 
±0.061 

0.0355
±0.013 

2 0.0030
±0.0010

0.0043
±0.0037

0.0056
±0.0038

0.0077
±0.0082

0.0207 
±0.0106 

0.0081 
±0.0036 

0.0373 
±0.0061

0.0364
±0.013 

4 0.0029
±0.0011

0.0044
±0.0042

0.0063
±0.0057

0.0084
±0.0091

0.0224 
±0.0096 

0.0077 
±0.0034 

0.0378 
±0.0092

0.0366
±0.015 

8 0.0031
±0.0011

0.0045
±0.0048

0.0057
±0.0042

0.0099
±0.0111

0.0232 
±0.0125 

0.0086 
±0.0060 

0.0379 
±0.0085

0.0361
±0.013 

In
-s

am
pl

e 
er

ro
r 

1 0.2012
±0.114

0.1389
±0.123

0.2584
±0.121

0.1169
±0.093

0.1782 
±0.077 

0.1178 
±0.051 

0.1482 
±0.023 

0.1553
±0.039 

2 0.1201
±0.091

0.0341
±0.041

0.1521
±0.108

0.0963
±0.106

0.1755 
±0.089 

0.1177 
±0.110 

0.1738 
±0.036 

0.1600
±0.033 

4 0.1303
±0.072

0.0803
±0.096

0.1447
±0.078

0.1152
±0.121

0.1656 
±0.039 

0.1226 
±0.101 

0.1632 
±0.030 

0.1488
±0.056 

8 0.0776
±0.081

0.0288
±0.023

0.1458
±0.134

0.1058
±0.109

0.1843 
±0.081 

0.0946 
±0.086 

0.1517 
±0.033 

0.1494
±0.041 
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Table II summarizes the experimental results for the real-

life FCM. The reported values have been calculated as 
averages obtained from 5 independent experiments for each 
setup. 

TABLE II 
EXPERIMENTAL RESULTS FOR REAL-LIFE DATA 

# Time 
[s] 

In-sample 
error 

Out-of-
sample error

1 891.6
±0.54

0.0048 
±0.0016 

0.1166 
±0.038 

2 464.2
±0.45

0.0049 
±0.0018 

0.1284 
±0.055 

4 317.4
±0.55

0.0053 
±0.0024 

0.1424 
±0.101 

8 269.6
±18.62

0.0048 
±0.0019 

0.1259 
±0.059 

 
Analysis of the results for both synthetic and real-life data 

is presented in the two following subsections. 

A. Execution time 
Results in Table I show no significant influence of density 

on the execution time. The influence of the map’s size and 
the number of processors on the execution time is shown in 
Figure 3. The execution time for the two map densities has 
been averaged out for each map size. Additionally, the 
columns are linearly normalized to the maximum execution 
time for each setup (which corresponds to the sequential 
learning). A number above each bar shows the execution 
time (in seconds).  
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Fig. 3.  Execution time vs. experimental setup 
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Fig. 4.  In-sample error vs. experimental setup 

In general, parallel learning on eight processors allows 
doubling the size of the FCM within virtually the same time 
that is required for the sequential learning. Comparison of 
the results obtained from simulations on a single processor 
(traditional, sequential learning) to those on two processors 
shows almost two-fold time-reduction for each setup (time 
gain varies between 43% and 47%). However, doubling the 
number of processors again does not result in the 
corresponding two-fold time reduction. When compared 
with sequential learning with a single processor, the time 
gain is, on average, 60% and 69% for four and eight 
processors, respectively. This is due to the fact that the 
execution time of the sequential constraints of performing 
genetic operations on population of chromosomes becomes a 
more significant part of the total execution time. This 
happens as the fitness function evaluations performed in 
parallel are completed faster on larger number of processors. 
Therefore, in this RCGA parallelization approach we 
observe decreasing returns along with increasing the number 
of processors. 

B. Learning quality 
Figure 4 shows relation between in-sample error and the 

size and density of FCMs, as well as the number of 
processors. A few interesting conclusions can be drawn 
from this figure. Firstly, the quality of learning gradually 
decreases along with the increasing input map size. The in-
sample error value changes from 0.004 for FCMs with 10 
nodes to 0.036 for FCMs with 80 nodes. This is due to 
complexity of the optimization problem, which drastically 
increases with the increase of the size of maps. However, 

even for the largest investigated maps the results are still 
significantly better from the baseline of this problem, which 
has been experimentally found at the value of 0.391 (see 
[19] for details). Secondly, the experiments with different 
hardware setups, i.e. different number of processors for a 
certain map size and density, are consistent in terms of the 
solution quality. The standard deviation of the in-sample 
error measured for different number of processors for a 
given setup is very small and varies from 0.00012 (10 nodes 
80%) to 0.0020 (80 nodes 40%). This is in spite of the fact 
that the error values differ, which suggests that the learning 
method finds sub-optimal solutions of similar quality. The 
last observation is also consistent with the conclusions in 
[19]. Finally, the in-sample error does not depend on the 
input map’s density. For sparser maps, it is only slightly 
lower for 10 and 20-nodes FCMs, and slightly higher for 40 
and 80-nodes FCMs.  

Figure 5 shows the relationship between out-of-sample 
error and the experimental setup, i.e. the map size and 
density, and the number of processors. 
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Fig. 5.  Out-of-sample error vs. experimental setup 

Figure 5 shows that the out-of-sample error slightly 
increases as the size of maps increases. However, it does not 
increase as rapidly for the larger maps as in case of the in-
sample error. The out-of-sample error is, on average, equal 
to 0.109 for 10 nodes, 0.132 for 20 nodes, 0.144 for 40 
nodes, and 0.156 for 80 nodes. The error values for maps 
with 10 nodes are consistent with values reported in [19]. 
Again, we stress that the learning results are still of high 
quality with respect to the baseline value (0.391). The out-
of-sample error has larger standard deviation for 
experiments with the same map size and density performed 
on different number of processors when compared with 
corresponding values for the in-sample error, i.e., they 
differs between 0.0053 (80 nodes 80%) and 0.028 (10 nodes 
40%). This is due to the fact that sub-optimal solutions 
(FCM models) for the out-of-sample experiments may differ 
from each other. Thus, even if all of them provide high 
quality results on previously seen data (in-sample error); 
these models can give different simulations for new initial 
vectors (out-of-sample error). Lastly, the relationship 
between the input map density and the out-of-sample error is 
more consistent here than in case of the in-sample error. On 
average, better quality is obtained for denser maps in each 
case, i.e. for 10, 20, 40, and 80 nodes. 



 
 

 

We also analyze relation between the learning quality and 
the number of processors. The difference in the in-sample 
error between experiments repeated with the same setups 
(on 2, 4, and 8 processors, respectively) with respect to the 
sequential learning is very small (2-3% on average). In case 
of the out-of-sample error, these values are larger (6-12%), 
which is due to sub-optimal solutions found by the RCGA 
(see the above paragraph). However, when compared with 
the standard deviations obtained for the sequential setup, the 
difference in errors between the non-parallelized and the 
parallelized implementations is not significant. 

V. CONCLUSION 
This paper proposed a novel parallel approach to learning 

of FCMs. The method is based on RCGA learning, which 
has been previously reported as being able to develop high-
quality FCMs from input data. Our motivation was to 
eliminate the main drawback of the RCGA based method, 
which is incapability of dealing with larger maps due to high 
computational complexity.  

Our focus was to propose a solution that would combine 
the quality of the RCGA method with a substantial decrease 
of the execution time. We have proposed, implemented and 
tested a solution that parallelizes the genetic algorithm, 
which is the core of the RCGA approach. 

The experimental results show that parallelization gives 
substantial improvement in the execution time. The 
parallelized learning of FCMs on eight processors was 
reported to be up to four times faster than the sequential 
learning. The proposed method allows learning maps that 
include several dozens of concepts in matter of few hours 
when using eight processors.  

The parallelized RCGA method for learning FCMs has 
been tested on both synthetic and real-life data. The 
experimental results show that this method is able to provide 
high-quality solutions for large FCMs. Both in-sample and 
out-of-sample errors increased with the increasing map size; 
however the error values were still substantially smaller than 
the baseline error. 

VI. FUTURE WORK 
There are several future research directions based on this 

project. First, it would be interesting to measure how much 
of the computational time is devoted to do the fitness 
evaluation. Second, a comparison between different methods 
of RCGA parallelization to select the best approach will be 
investigated. Third, we plan to propose an alternative 
approach to speed up the learning process by exploiting 
inherent characteristics of FCMs, e.g. by dividing the input 
data into subsets, performing independent learning on each 
subset, and, finally, merging the sub-models. Last but not 
least, we plan to apply one of these learning methods to real-
life problems, e.g. in the systems biology field.   
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